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Abstract

Autoregressively trained transformers have brought a profound revolution to the world, espe‐
cially with their in‐context learning (ICL) ability to address downstream tasks. Recently, several
studies suggest that transformers learn a mesa‐optimizer during autoregressive (AR) pretrain‐
ing to implement ICL. Namely, the forward pass of the trained transformer is equivalent to
optimizing an inner objective function in‐context. However, whether the practical non‐convex
training dynamics will converge to the ideal mesa‐optimizer is still unclear. Towards filling this
gap, we investigate the non‐convex dynamics of a one‐layer linear causal self‐attention model
autoregressively trained by gradient flow, where the sequences are generated by an AR process
xt+1 = W xt. First, under a certain condition of data distribution, we prove that an autoregres‐
sively trained transformer learns W by implementing one step of gradient descent to minimize an
ordinary least squares (OLS) problem in‐context. It then applies the learned Ŵ for next‐token pre‐
diction, thereby verifying the mesa‐optimization hypothesis. Next, under the same data con‐
ditions, we explore the capability limitations of the obtained mesa‐optimizer. We show that a
stronger assumption related to the moments of data is the sufficient and necessary condition
that the learned mesa‐optimizer recovers the distribution. Besides, we conduct exploratory
analyses beyond the first data condition and prove that generally, the trained transformer will
not perform vanilla gradient descent for the OLS problem. Finally, our simulation results verify
the theoretical results, and the code is available at https://github.com/ML‐GSAI/MesaOpt‐AR‐
Transformer.

Highlights

We propose a theoretical baseline to study the properties of the AR transformer.
We verify the empirical mesa‐optimization hypothesis in such setup.
We conduct simulation to validate our theoretical findings.

Problem setup

We introduce the proposed theoretical setting.

Data distribution
We want to generate sequence (x1, . . . , xT ) ∈ Cd×T according to the true distribution.
A unitary matrix W ∈ Cd×d is sampled uniformly from PW = {diag(λ1, . . . , λd) | |λi| = 1, ∀i ∈ [d]}.
Subsequent elements are generated as xt+1 = W xt for t ∈ [T − 1].

Model: one‐layer linear casual attention
Model computation:
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Training algorithm
Next‐token prediction loss:
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t=2
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Assumption 1(Diagonal initialization) At the initial time τ = 0, we assume that
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where the red submatrices are related to the ŷt and changed during the training process.
Optimization algorithm:

d
dτ

θ = −∇L(θ).

Trained transformer is a mesa-optimizer

Assumption 2(Sufficient condition for the emergence of mesa‐optimizer)We assume that the
distribution Dx1 of the initial token x1 ∈ Rd satisfies Ex1∼Dx1
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1r] are finite constant for any j ∈ [d].

Theorem 1(Convergence of the gradient flow) Consider the gradient flow of the one‐layer
linear transformer over the population AR pretraining loss. Suppose the initialization satis‐
fies Assumption 1, and the initial token’s distribution Dx1 satisfies Assumption 2, then the
gradient flow converges toW̃

KQ
22 W̃

KQ
23

W̃
KQ
32 W̃

KQ
33

 =
(

0d×d 0d×d
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Though different initialization (a0, b0) lead to different (ã, b̃), the solutions’ product ãb̃ satisfies

ãb̃ = κ1
κ2 + κ3
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∑T−1
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.

Corollary 1 We suppose that the same precondition of Theorem 1 holds. When predicting
the (t + 1)‐th token, the trained transformer obtains Ŵ by implementing one step of gra‐
dient descent for the OLS problem LOLS,t(W ) = 1

2
∑t−1

i=1 ∥xi+1 − W xi∥2, starting from the
initialization W = 0d×d with a step size ãb̃

t−1.

Capability limitation of the trained transformer

First, we give a ”simple” distribution that can not be recovered by the trained transformer.

Proposition 1(AR process with normal distributed initial token can not be learned) Let Dx1
be the multivariate normal distribution N (0d, σ2Id) with any σ2 > 0, then the ”simple” AR
process can not be recovered by the trained transformer even in the ideal case with long
training context. Formally, when the training sequence length Ttr is large enough, for any
test context length Tte and dimension j ∈ [d], the prediction from the trained transformer
satisfies

Ex1,W [
(ŷTte

)j
(WxTte
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] → 1
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.

Therefore, the prediction ŷTte
will not converges to the true next token W xTte

.

Remark. Proposition 4.1 suggests that ICL by AR pretraining is different from ICL by few‐shot
pretraining [2].

Assumption 3(Condition for success of mesa‐optimizer) Based on Assumption 2, we further

suppose that κ1
κ2

∑Tte−1
i=1 xix

∗
i

Tte−1 xTte
→ xTte

for any x1 and W , when Tte is large enough.

Example 1(sparse vector) If the random vector x1 ∈ Rd is uniformly sampled from the candi‐
date set of size 2d {±(c, 0, . . . , 0)⊤, ±(0, c, . . . , 0)⊤, ±(0, . . . , 0, c)⊤} for any fixed c ∈ R, then
the distribution Dx1 satisfies Assumption 3.

Theorem 2(Trained transformer succeed to learn the distribution satisfies Assumption 3)
Suppose that Assumption 1 and 2 hold, then Assumption3 is the sufficient and necessary
condition for the trained transformer to learn the AR process. Formally, when the training
sequence length Ttr and test context length Tte are large enough, the prediction from the
trained transformer satisfies

ŷTte
→ W xTte

, Ttr, Tte → +∞.

Go beyond the Assumption 1

We conduct exploratory analyses by adopting the setting in [1], where the initial token x1 is
fixed as 1d.

First, sharing the similar but weaker assumption of [1], we impose W
KQ
32 and W PV

12 to stay
diagonal during training by masking the non‐diagonal gradients, then the trained transformer
will perform one step of gradient descent.

Theorem 3(Trained transformer as mesa‐optimizer with non‐diagonal gradient masking) Sup‐
pose the initialization satisfies Assumption 1, the initial token is fixed as 1d, and we clip
non‐diagonal gradients of W

KQ
32 and W PV

12 during the training, then the gradient flow of the
one‐layer linear transformer over the population AR loss converges to the same structure as
the result in Theorem 1, with

ãb̃ = 1
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Therefore, the obtained transformer performs one step of gradient descent in this case.

Next, we adopt some exploratory analyses for the gradient flow without additional non‐
diagonal gradient masking.

Proposition 2(Trained transformer does not perform on step of gradient descent) The limiting
point found by the gradient does not share the same structure as that in Theorem 1, thus the
trained transformer will not implement one step of vanilla gradient descent for minimizing the
OLS problem 1

2
∑t−1

i=1 ∥xi+1 − Wxi∥2. We suggest that it will perform some preconditioned
gradient descent.

Simulation results

(a) Gaussian with σ = 0.5, dynamics of ab. (b) Gaussian with σ = 0.5, ratio of ŷTte−1/xTte.

Figure 1. For example, simulation results on Gaussian show that the convergence of ab satisfies Theorem 1
and verifies Proposition 1.
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