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1.1 Generative data augmentation (GDA)

Generative data augmentation, which scales datasets by generating labeled examples from a
trained conditional generative model, boosts classification performance in various tasks.

Figure: Example 1024× 1024 images from the Imagen model.
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1.2 GDA helps supervised learning

Figure: Comparison of classifier performance when 1.2M generated images are used for GDA [1].
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1.3 GDA helps semi-supervised learning

Figure: DPT improves the state-of-the-art semi-supervised learner [2].
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1.4 GDA helps adversarial learning

Figure: GDA improves the robustness of deep models [3].
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1.5 Open problem

Lack of theoretical understanding

Little work has investigated the GDA from a theoretical perspective.

Our contributions

We establish a general theoretical framework for the GDA in the supervised learning
setting.

We particularize the general results to the binary Gaussian mixture model (bGMM) and
generative adversarial nets (GANs).

We conduct experiments to validate our theoretical findings.
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2.1 Notions and definitions

Data:
Let X ⊆ Rn be the input space and Y be the label space.
We denote by D the population distribution over Z = X× Y.

Learning algorithm:
Let A be a learning algorithm.
Let A(S) ∈ (Y)X be the hypothesis learned on the dataset S.

Evaluation:
Loss function ℓ : (Y)X × Z → R+.
True error RD(A(S)) with respect to the data distribution D is defined as Ez∼D[ℓ(A(S), z)].

Empirical error R̂S(A(S)) is defined as 1
m

∑m
i=1 ℓ(A(S), zi).
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2.1 Notions and definitions

Training generative model: given a dataset S with mS i.i.d. examples from D, we can
train a conditional generative model G with the model distribution DG(S).

Generative data augmentation: we then obtain a new dataset SG with mG i.i.d.
samples from DG(S), where mG is a hyperparameter.

We denote the total number of the data in augmented set S̃ = S ∪ SG by mT .

We define the mixed distribution after augmentation as D̃(S) = mS
mT

D+ mG
mT

DG(S)

Our goal

We interested in the generalization error Gen-error = |RD(A(S̃))− R̂
S̃
(A(S̃))|. We will derive

a high probability bound for it by using the algorithmic stability technique.
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2.2 Algorithmic stability

Algorithmic stability analysis is an important tool to provide generalization guarantees, which
exploits particular properties of the algorithm and provides algorithm-dependent bound.
Given a set S = {z1, z2, . . . , zm}, we define Si as the set after replacing the i-th data point
with z′i in the set S.

Definition 1 (Uniform stability)

Algorithm A is uniformly βm-stable with respect to the loss function ℓ if the following holds

∀S ∈ Zm, ∀z ∈ Z,∀i ∈ [m], sup
z

∣∣∣ℓ(A(S), z)− ℓ(A(Si), z)
∣∣∣ ≤ βm.

Understanding the stability

Intuitively, the more stable an algorithm is, the less sensitive it is to the input, and thus less
likely to overfit.
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2.3 Stability bound in the i.i.d. setting

[4] proposed a moment bound and obtained a nearly optimal generalization guarantee, which
only requires βm = o(1/ logm) to converge.

Theorem 2 (Corollary 8, [4])

Assume that A is a βm-stable learning algorithm and the loss function ℓ is bounded by M .
Given a training set S with m i.i.d. examples sampled from the distribution D, then for any
δ ∈ (0, 1), with probability at least 1− δ, it holds that

∣∣∣RD(A(S))− R̂S(A(S))
∣∣∣ ≲ log(m)βm log

(
1

δ

)
+M

√
1

m
log

(
1

δ

)
.
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2.4 GDA is a non-i.i.d setting

Mismatch with the classical results

GDA is a non-i.i.d setting:

The distribution DG(S) learned by the generative model is generally not the same as the
true distribution D.

The learned model distribution DG(S) is heavily dependent on the sampled dataset S.

First attempt

We try to use the existing non-i.i.d stability bounds [5].
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2.5 Stability bounds for mixing processes

Existing stability bounds for mixing processes only focus on the stationary sequence.

Definition 3 (Stationary sequence)

A sequence of random variables Z = {Zt}∞t=−∞ is said to be stationary if for any t and
non-negative integers m and k, the random vectors (Zt, . . . , Zt+m) and (Zt+k, . . . , Zt+m+k)
have the same distribution.

Problem

Unfortunately, the GDA setting in this paper does not satisfy the stationary condition, because
(z1, . . . , zmS ) = S and (zmS+1, . . . , z2mS ) ⊆ SG do not have the same distribution.
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2.6 Stability bounds for dependence graph

The dependence graph reflects the dependence between random variables.

Figure: Dependence graph in the GDA setting.

Chenyu Zheng (GSAI@RUC) Understanding Generative Data Augmentation NeurIPS 2023 (Poster) 16 / 38



2.6 Stability bounds for dependence graph

Theorem 4

Assume that A is a βm-stable. Given a set S̃ of size m sampled from the same marginal
distribution D with dependency graph G. Suppose the maximum degree of G is ∆, and the
loss function ℓ is bounded by M . For any δ ∈ (0, 1), with probability at least 1− δ, it holds
that

RD(A(S̃)) ≤ R̂
S̃
(A(S̃)) + 2βm,∆(∆ + 1) + (4βm +

M

m
)

√
Λ(G)

2
log(

1

δ
),

where βm,∆ = maxi≤∆ βm−i and Λ(G) is the forest complexity of the dependence graph G.
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2.6 Stability bounds for dependence graph

Problems

Theorem 4 requires S̃ sampled from the same marginal distribution D, which fails to hold
in the context of GDA.

When mG = 0 and S̃ = S, Theorem 4 requires βm = o(1/
√
m) to converge.

Theorem 4 is proposed for the general case with data dependence and does not consider
the property of special cases. In the case of strong dependence like GDA, the forest
complexity may be too large to give a meaningful bound:

Λ(G) ≤ mS(1 +mG)
2 + 12 ≲ mSm

2
G,

M

mT

√
Λ(G)

2
log(

1

δ
) ≲

M

mT

√
mSm2

G

2
log(

1

δ
) ≲ M

√
mS

2
log(

1

δ
),

which fails to converge.
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3.1 Proof idea

Recall that D̃(S) has been defined as the mixed distribution, we first decomposed Gen-error as

|Gen-error| = |RD(A(S̃))− R̂
S̃
(A(S̃))|

≤
∣∣∣RD(A(S̃))− R

D̃(S)
(A(S̃))

∣∣∣︸ ︷︷ ︸
Distributions’ divergence

+
∣∣∣RD̃(S)

(A(S̃))− R̂
S̃
(A(S̃))

∣∣∣︸ ︷︷ ︸
Generaliztion error w.r.t. mixed distribution

.

Main idea

The first term can be bounded by the divergence (e.g., DTV,DKL) between the mixed

distribution D̃(S) and the true distribution D. It is heavily dependent on the ability of the
chosen generative model.

For the second term, We mainly use a core property that S satisfies the i.i.d. assumption,
and SG satisfies the conditional i.i.d. assumption when S is fixed. Inspired by this
property, we furthermore decompose this term to obtain an upper bound.

Chenyu Zheng (GSAI@RUC) Understanding Generative Data Augmentation NeurIPS 2023 (Poster) 20 / 38



3.1 Proof idea

Recall that D̃(S) has been defined as the mixed distribution, we first decomposed Gen-error as

|Gen-error| = |RD(A(S̃))− R̂
S̃
(A(S̃))|

≤
∣∣∣RD(A(S̃))− R

D̃(S)
(A(S̃))

∣∣∣︸ ︷︷ ︸
Distributions’ divergence

+
∣∣∣RD̃(S)

(A(S̃))− R̂
S̃
(A(S̃))

∣∣∣︸ ︷︷ ︸
Generaliztion error w.r.t. mixed distribution

.

Main idea

The first term can be bounded by the divergence (e.g., DTV,DKL) between the mixed

distribution D̃(S) and the true distribution D. It is heavily dependent on the ability of the
chosen generative model.

For the second term, We mainly use a core property that S satisfies the i.i.d. assumption,
and SG satisfies the conditional i.i.d. assumption when S is fixed. Inspired by this
property, we furthermore decompose this term to obtain an upper bound.

Chenyu Zheng (GSAI@RUC) Understanding Generative Data Augmentation NeurIPS 2023 (Poster) 20 / 38



3.1 Proof idea

Recall that D̃(S) has been defined as the mixed distribution, we first decomposed Gen-error as

|Gen-error| = |RD(A(S̃))− R̂
S̃
(A(S̃))|

≤
∣∣∣RD(A(S̃))− R

D̃(S)
(A(S̃))

∣∣∣︸ ︷︷ ︸
Distributions’ divergence

+
∣∣∣RD̃(S)

(A(S̃))− R̂
S̃
(A(S̃))

∣∣∣︸ ︷︷ ︸
Generaliztion error w.r.t. mixed distribution

.

Main idea

The first term can be bounded by the divergence (e.g., DTV,DKL) between the mixed

distribution D̃(S) and the true distribution D. It is heavily dependent on the ability of the
chosen generative model.

For the second term, We mainly use a core property that S satisfies the i.i.d. assumption,
and SG satisfies the conditional i.i.d. assumption when S is fixed. Inspired by this
property, we furthermore decompose this term to obtain an upper bound.

Chenyu Zheng (GSAI@RUC) Understanding Generative Data Augmentation NeurIPS 2023 (Poster) 20 / 38



3.2 Decomposition of the second term

For function f(S), we denote its Lp norm and conditional Lp norm with respect to SV by

∥f∥p = (E[ ∥f∥p])
1
p and ∥f∥p (SV ) = (E[ ∥f∥p | SV ])

1
p , respectively.∥∥∥∥mT

(
R
D̃(S)

(A(S̃))− R̂
S̃
(A(S̃))

)∥∥∥∥
p

=

∥∥∥∥∥∥mSRD(A(S̃)) +mGRDG(S)(A(S̃))−
∑
zi∈S

ℓ(A(S̃), zi)−
∑

zi∈SG

ℓ(A(S̃), zi)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥mSRD(A(S̃))−
mS∑
i=1

ℓ(A(S̃), zi)

∥∥∥∥∥∥
p︸ ︷︷ ︸

∥Φ1(S,SG)∥
p

+

∥∥∥∥∥∥mGRDG(S)(A(S̃))−
mG∑
i=1

ℓ(A(S̃), zGi )

∥∥∥∥∥∥
p︸ ︷︷ ︸

∥Φ2(S,SG)∥
p

≤
∥∥∥Φ1 − ESG∼D

mG
G (S)Φ1

∥∥∥
p
+
∥∥∥ESG∼D

mG
G (S)Φ1

∥∥∥
p
+ sup

S
∥Φ2∥p (S).
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3.3 General theoretical result

Theorem 5 (Generalization bound for GDA)

Assume that A is a βm-stable learning algorithm and the loss function ℓ is bounded by M .
Given an augmented set S̃, then for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

|Gen-error| ≲ mG

mT
MDTV

(
D,DG(S)

)
︸ ︷︷ ︸

Distributions’ divergence

+
M(

√
mS +

√
mG) +mS

√
mGβmT

mT

√
log

(
1

δ

)

+
βmT (mS logmS +mG logmG) +mS logmSMT(mS ,mG)

mT
log

(
1

δ

)
,

where T(mS ,mG) = supiDTV

(
D

mG
G (S),DmG

G (Si)
)
.
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3.3 General theoretical result

We consider the order of the learning guarantee with respect to mS here.

Remark (Selection of augmentation size)

An efficient augmentation size m∗
G,order with regard to the order of mS can be defined as:

m∗
G,order = inf

mG

{generalization error w.r.t. mixed distribution ≲ distributions’ divergence} .

Corollary 6 (Sufficient conditions for GDA with (no) faster learning rate)

Assume the assumptions in Theorem 5 hold, then

if DTV

(
D,DG(S)

)
= o

(
max

(
log(m)βm, 1/

√
m)

))
, then GDA enjoys a faster learning

rate.

if DTV

(
D,DG(S)

)
= Ω

(
max

(
log(m)βm, 1/

√
m)

))
, then GDA can not enjoy a faster

learning rate.
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3.3 General theoretical result

Our result also shows the importance of the ”stability” of the generative model training.

Remark (Stability of the learned distribution)

T(mS ,mG) = supiDTV

(
D

mG
G (S),DmG

G (Si)
)
in Theorem 5 reflects the stability of the learned

distribution. Our bound suggests that the more stable the model distribution is, the better
generalization can be achieved by GDA.

We can particularize our general theory to concrete settings.

Remark (Applied to specified settings)

To analyze specified GDA settings, we need to estimate terms M , βmT , DTV

(
D,DG(S)

)
and

T(mS ,mG) in Theorem 5.
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4.1 bGMM setting

Distribution: y ∼ uniform{−1, 1} and x | y ∼ N (yµ, σ2Id), where ∥µ∥2 = 1 and
σ2 > 0.

Linear classifier: ŷ = sign(θ⊤x). Given m samples, θ is learned by minimizing the NLL
loss:

l(θ, (x, y)) =
1

2σ2
(x− yθ)⊤(x− yθ).

As a result, this learning algorithm will return θ̂ = 1
m

∑m
i=1 yixi, which satisfies E[θ̂] = µ.

Generative model: given m data points, let my be the number of samples in class y,

µ̂y =

∑
yi=y xi

my
, σ̂2

k =
∑
y

my

m

∑
yi=y(xik − µ̂yk)

2

my − 1
,

Based on the learned parameters, we can perform GDA by generating new samples from
the distribution y ∼ uniform{−1, 1}, x | y ∼ N (µ̂y, Σ̂), where Σ̂ = diag(σ̂2

1, . . . , σ̂
2
d).
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m

∑m
i=1 yixi, which satisfies E[θ̂] = µ.

Generative model: given m data points, let my be the number of samples in class y,

µ̂y =

∑
yi=y xi

my
, σ̂2

k =
∑
y

my

m

∑
yi=y(xik − µ̂yk)

2

my − 1
,

Based on the learned parameters, we can perform GDA by generating new samples from
the distribution y ∼ uniform{−1, 1}, x | y ∼ N (µ̂y, Σ̂), where Σ̂ = diag(σ̂2

1, . . . , σ̂
2
d).
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4.2 Theoretical result

Theorem 7 (Generalization bound for bGMM)

Given a set S with mS i.i.d. samples from the bGMM distribution D and an augmented set
SG with mG i.i.d. samples drawn from the learned Gaussian mixture distribution, then with
high probability at least 1− δ, it holds that

|Gen-error| ≲



log(mS)√
mS

if fix d and mG = 0,
log2(mS)√

mS
if fix d and mG = Θ(mS),

log(mS)√
mS

if fix d and mG = m∗
G,order,

d if fix mS .
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4.2 Theoretical result

Negative learning rate of GDA

Even though we estimate the sufficient statistics of the Gaussian mixture distribution directly,
we can not enjoy a better learning rate.

Improvement at a constant level matters a lot when overfitting happens

When mS is small and d is large, the generalization error is awful. In this case, though GDA
can only improve it at a constant level, the effect is obvious due to the large scale of d.
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4.3 Simulation results

Figure: Simulations results with µ = (1/
√
d, . . . , 1/

√
d)⊤ and σ2 = 0.62
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5.1 GAN setting

Distribution: X ⊆ [0, 1]d and Y = {−1, 1}.

Deep neural classifier: L-layer MLP or CNN f(w, ·) : Z → R, where w denotes its
weights and wl denotes the weights in the l-th layer. We assume that f(w, ·) is η-smooth
and ∥wl∥2 is Wl-bounded.

Learning algorithm for the classifier: the loss function is the cross-entropy loss and it
is optimized by SGD. For the t-th step, we set the step size as c

ηt . Besides, the total
iteration number T = O(mT ).

Deep generative model: GAN is parameterized by MLP and its architecture is the same
as that in Theorem 19 of [6] (somewhat strong assumptions). In addition, we assume
that each category is learned by a GAN, respectively.
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5.2 Theoretical result

Theorem 8 (Generalization bound for GAN)

Given a set S with mS i.i.d. samples from any distribution D and an augmented set SG with
mG i.i.d. examples sampled from the distribution DG(S) learned by GANs, then for any fixed
δ ∈ (0, 1), with probability at least 1− δ, it holds that

E|Gen-error| ≲


1√
mS

if fix W,L, d, let mG = 0,(
log(mS)

mS

) 1
4

if fix W,L, d, let mG = m∗
G,order,

dL2
(∏L

l=1 ∥Wl∥2
)2

if fix mS .
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5.2 Theoretical result

Slow learning rate with GDA

When we perform GDA, the order with regard to mS strictly becomes worse. Therefore, it
implies that when mS is rich, it is hopeless to boost the performance obviously by augmenting
the train set based on GANs. On the contrary, GDA may make the generalization worse.

GDA matters a lot when overfitting happens

As the data dimension and model capacity become larger, the deep neural classifier gains
terrible generalization performance. In this case, a constant-level improvement of
generalization caused by GDA will be significant.
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5.3 Experimental design

GANs are chosen to validate Theorem 8 empirically and the EDM is chosen to explore the
ability of the diffusion model.

We choose a ”good” GAN (StyleGAN2-ADA) to verify that GANs can not improve the
test performance obviously when the mS is approximately large (with standard
augmentation).

We choose a ”bad” GAN (DCGAN) to empirically verify that GANs can improve the test
performance when mS is small and awful overfitting happens (without standard
augmentation).

We conduct experiments on the SOTA diffusion model (EDM) and suggest that diffusion
models have a better DTV(D,DG(S)) than GANs.
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5.4 Empirical results

Figure: Accuracy on the CIFAR-10 test set.
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Conclusion

Our contributions

We establish a general theoretical framework for the GDA in supervised learning.

We particularize the general results to the binary Gaussian mixture model (bGMM) and
generative adversarial nets (GANs).

We conduct experiments to validate our theoretical findings.

Future works (from easy to hard)

Other settings: semi-supervised learning, adversarial training, etc.

General non-i.i.d. learning:

Dependence graph: improving Theorem 4 by sharper moment bounds.
Mixing process: non-stationary stability bounds.

Understanding generative models: memorization, generalization, stability, etc.
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