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1.1 Generative data augmentation (GDA)

Generative data augmentation, which scales datasets by generating labeled examples from a
trained conditional generative model, boosts classification performance in various tasks.

bittern bird

harvestman

Figure: Example 1024 x 1024 images from the Imagen model.
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1.2 GDA helps supervised learning
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Figure: Comparison of classifier performance when 1.2M generated images are used for GDA [1].
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1.3 GDA helps semi-supervised learning

76
741 @ SOTA Semi-Supervised Learners

DPT
@ DPT (ours) SOT.
5 724
7 0,
CDM (100%) 701 -
68 1
4 ADM (100%) 661 SOTA
DPT (ours, <0.1%) LDM (100%) o
34 DPT (ours, <0.2%) 624
® ° &
2 w 581
DT tours, 1%) g\ pervised Raseline, SOTA (100%) sl som
54

<0.1% (1) <0.2% (2) <0.4% (5)
Label Fraction Label Fraction (# Labels per Class)

FID-50K - ImageNet 256x256
Top-1 Accuracy - ImageNet

Figure: DPT improves the state-of-the-art semi-supervised learner [2].
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1.4 GDA helps adversarial learning
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Figure: GDA improves the robustness of deep models [3].
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1.5 Open problem

Lack of theoretical understanding

Little work has investigated the GDA from a theoretical perspective.

Our contributions

@ We establish a general theoretical framework for the GDA in the supervised learning
setting.

@ We particularize the general results to the binary Gaussian mixture model (bGMM) and
generative adversarial nets (GANs).

@ We conduct experiments to validate our theoretical findings.
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2.1 Notions and definitions

o Data:

o Let X C R™ be the input space and Y be the label space.
o We denote by D the population distribution over Z =X x Y.
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2.1 Notions and definitions

o Data:

o Let X C R™ be the input space and Y be the label space.

o We denote by D the population distribution over Z =X x Y.
o Learning algorithm:

o Let A be a learning algorithm.

o Let A(S) € (Y)* be the hypothesis learned on the dataset S.
o Evaluation:

o Loss function £: (Y)* x 2 — R,.
e True error Ry (A(S)) with respect to the data distribution D is defined as E,.»[¢(A(S), z)].

o Empirical error Rs(A(S)) is defined as L 37 £(A(S), z;).
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2.1 Notions and definitions

@ Training generative model: given a dataset S with mg i.i.d. examples from D, we can
train a conditional generative model G with the model distribution D¢ (S).
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2.1 Notions and definitions

@ Training generative model: given a dataset S with mg i.i.d. examples from D, we can
train a conditional generative model G with the model distribution D¢ (S).

o Generative data augmentation: we then obtain a new dataset Sg with mg i.i.d.
samples from D(.S), where mg is a hyperparameter.

@ We denote the total number of the data in augmented set S=SUSq by mr.
o We define the mixed distribution after augmentation as D() = D + 28D (S)

Our goal

We interested in the generalization error Gen-error = | Ry (A(S)) — ﬁg(ﬂ(g)ﬂ We will derive

a high probability bound for it by using the algorithmic stability technique.
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2.2 Algorithmic stability

Algorithmic stability analysis is an important tool to provide generalization guarantees, which

exploits particular properties of the algorithm and provides algorithm-dependent bound.
Given a set S = {z1, 2o,

.., Zm }, we define S as the set after replacing the i-th data point
with z/ in the set S.

Definition 1 (Uniform stability)

Algorithm A is uniformly (,,-stable with respect to the loss function £ if the following holds

VS € 2™, Vz € 2,Vi € [m],sup|l(A(S),2z) — £(A(S"),2)| < Bm.

Understanding the stability

Intuitively, the more stable an algorithm is, the less sensitive it is to the input, and thus less
likely to overfit.
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2.3 Stability bound in the i.i.d. setting

[4] proposed a moment bound and obtained a nearly optimal generalization guarantee, which
only requires 3, = o(1/logm) to converge.

Theorem 2 (Corollary 8, [4])

Assume that A is a (,,-stable learning algorithm and the loss function ¢ is bounded by M.
Given a training set S with m i.i.d. examples sampled from the distribution D, then for any
0 € (0,1), with probability at least 1 — ¢, it holds that

R (A(S)) ~ Re(A(S)| S og(m)inog (5 ) + 31y [ 105 (5 ).
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2.4 GDA is a non-i.i.d setting

Mismatch with the classical results
GDA is a non-i.i.d setting:

@ The distribution D(S) learned by the generative model is generally not the same as the
true distribution D.

@ The learned model distribution D (S) is heavily dependent on the sampled dataset S.
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2.4 GDA is a non-i.i.d setting

Mismatch with the classical results
GDA is a non-i.i.d setting:

@ The distribution D(S) learned by the generative model is generally not the same as the
true distribution D.

@ The learned model distribution D (S) is heavily dependent on the sampled dataset S.

First attempt

We try to use the existing non-i.i.d stability bounds [5].
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2.5 Stability bounds for mixing processes

Existing stability bounds for mixing processes only focus on the stationary sequence.

Definition 3 (Stationary sequence)

A sequence of random variables Z = {Z,};° _is said to be stationary if for any ¢ and
non-negative integers m and k, the random vectors (Z, ..., Zitm) and (Zyvky - -« s Zivm+k)
have the same distribution.
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2.5 Stability bounds for mixing processes

Existing stability bounds for mixing processes only focus on the stationary sequence.

Definition 3 (Stationary sequence)

A sequence of random variables Z = {Z,};° _is said to be stationary if for any ¢ and
non-negative integers m and k, the random vectors (Z, ..., Zitm) and (Zyvky - -« s Zivm+k)
have the same distribution.

Problem

Unfortunately, the GDA setting in this paper does not satisfy the stationary condition, because
(Z1,...,2mg) =S and (Zmg+1,- .-, 2Z2mg) € S do not have the same distribution.
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2.6 Stability bounds for dependence graph

The dependence graph reflects the dependence between random variables.

Figure: Dependence graph in the GDA setting.
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2.6 Stability bounds for dependence graph

Theorem 4

Assume that A is a Bm-stable. Given a set S of size m sampled from the same marginal
distribution D with dependency graph G. Suppose the maximum degree of G is A, and the

loss function ¢ is bounded by M. For any § € (0,1), with probability at least 1 — ¢, it holds
that

Ro(A(8)) < R5(AB)) + 28 a(A +1) + (@8 + oy | M 10g 3,

where B, A = max;<A Bm—i and A(G) is the forest complexity of the dependence graph G.
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2.6 Stability bounds for dependence graph

Problems

|

@ Theorem 4 requires S sampled from the same marginal distribution D, which fails to hold
in the context of GDA.

@ When mg = 0 and S = S, Theorem 4 requires 3, = o(1/+/m) to converge.

@ Theorem 4 is proposed for the general case with data dependence and does not consider
the property of special cases. In the case of strong dependence like GDA, the forest
complexity may be too large to give a meaningful bound:

G) < mg( 1+mG +12 <mgmG,

\/A 1 M\/mSmGlg <M\/—log

which fails to converge.
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3.1 Proof idea

Recall that 5(3) has been defined as the mixed distribution, we first decomposed Gen-error as

| Gen-error] = |Rp(A(S)) — Rg(A(S))]
<[ R (A(E)) ~ Ry (ABN| + [R5y (A(S)) ~ Rg(A(S))

Distributions’ divergence Generaliztion error w.r.t. mixed distribution
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3.1 Proof idea

Recall that 5(5) has been defined as the mixed distribution, we first decomposed Gen-error as

| Gen-error] = |Rp(A(S)) — Rg(A(S))]
<[ R (A(E)) — Ry (ABN| + [R5y (A(S)) ~ R5(AS))]

Distributions’ divergence Generaliztion error w.r.t. mixed distribution

Main idea
@ The first term can be bounded by the divergence (e.g., Drv, Dk1,) between the mixed

distribution @(S) and the true distribution D. It is heavily dependent on the ability of the
chosen generative model.

Chenyu Zheng (GSAIGRUC) Understanding Generative Data Augmentation NeurlPS 2023 (Poster) 20/38



3.1 Proof idea

Recall that 5(5) has been defined as the mixed distribution, we first decomposed Gen-error as

| Gen-error] = |Rp(A(S)) — Rg(A(S))]

<[ R (A(E)) — Ry (ABN| + [R5y (A(S)) ~ R5(AS))]

Distributions’ divergence Generaliztion error w.r.t. mixed distribution

Main idea

@ The first term can be bounded by the divergence (e.g., Drv, Dk1,) between the mixed

distribution @(S) and the true distribution D. It is heavily dependent on the ability of the
chosen generative model.

@ For the second term, We mainly use a core property that S satisfies the i.i.d. assumption,
and S¢ satisfies the conditional i.i.d. assumption when S is fixed. Inspired by this
property, we furthermore decompose this term to obtain an upper bound.
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3.2 Decomposition of the second term

For function f(.S), we denote its L, norm and conditional L, norm with respect to Sy by
1 1 .
£l = ELISIPD? and [[£1], (Sv) = ELILFI" | Sv])7, respectively.

HmT (Rs505) (A(5)) ~ R5(A(S)))

= ||msRp(A(S)) + maRpg(s)(A(S)) = Y LAS), z) = > LA(S),2)
i€Sa

z; €S z »
<||msRp(A(S)) = D LAS),2:)|| +|maRpg(s)(A(S)) = Y UA(S), )
=1 » i=1 »
osssall, Jox(sisol,

< H<I>1 — ESGNDZ‘G(S)CIHHP + HESGNQQG(S)‘IHHP + sgp||q>2||p (S).
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3.3 General theoretical result

Theorem 5 (Generalization bound for GDA)

Assume that A is a By,-stable learning algorithm and the loss function { is bounded by M.
Given an augmented set S, then for any § € (0, 1), with probability at least 1 — 0, it holds that

mr

g M L
‘Gen_errof-‘ S %AIDTV (tD DG(S)) + (\/mS + \/WTG) i mS\/TTGﬂ a7 IOg <(15>
my

Distributions’ divergence

N Bmy (mglogmg + maglogmea) + mglogmsMT(mg, ma) 1 <1>
mp 5)’

where T(mg, ma) = sup; Dry (DEE(S), DEE(SY).
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3.3 General theoretical result

We consider the order of the learning guarantee with respect to mg here.

Remark (Selection of augmentation size)

An efficient augmentation size mg, , 4., With regard to the order of mg can be defined as:

MG order = 7171115 {generalization error w.r.t. mixed distribution < distributions’ divergence} .
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3.3 General theoretical result

We consider the order of the learning guarantee with respect to mg here.

Remark (Selection of augmentation size)

An efficient augmentation size mg, , 4., With regard to the order of mg can be defined as:

MG order = 717215 {generalization error w.r.t. mixed distribution < distributions’ divergence} .

Corollary 6 (Sufficient conditions for GDA with (no) faster learning rate)

Assume the assumptions in Theorem 5 hold, then

o if Dry (D, Da(S)) =o (max (log(m)Bm, 1/\/7n))) then GDA enjoys a faster learning
rate.

(] ifDTV (D,Dg(S)) =

Q (max (log(m)Bm, 1/@))) then GDA can not enjoy a faster
learning rate.
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3.3 General theoretical result

Our result also shows the importance of the "stability” of the generative model training.

Remark (Stability of the learned distribution)

T(ms, ma) = sup; Drv (DGE(S), DEE(SY)) in Theorem 5 reflects the stability of the learned
distribution. Our bound suggests that the more stable the model distribution is, the better
generalization can be achieved by GDA.
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3.3 General theoretical result

Our result also shows the importance of the "stability” of the generative model training.

Remark (Stability of the learned distribution)

T(ms, ma) = sup; Drv (DGE(S), DEE(SY)) in Theorem 5 reflects the stability of the learned
distribution. Our bound suggests that the more stable the model distribution is, the better
generalization can be achieved by GDA.

We can particularize our general theory to concrete settings.

Remark (Applied to specified settings)

To analyze specified GDA settings, we need to estimate terms M, S,,,, Drv (D, Dg(S)) and
T(mg, m¢) in Theorem 5.
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4.1 bGMM setting

e Distribution: y ~ uniform{—1,1} and x | y ~ N (yu,0%1,), where ||u]|2 = 1 and
2
o> 0.
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4.1 bGMM setting

e Distribution: y ~ uniform{—1,1} and x | y ~ N (yu,0%1,), where ||u]|2 = 1 and
a% > 0.
o Linear classifier: § = sign(8'x). Given m samples, 8 is learned by minimizing the NLL

loss: )
1O, (x,y)) = 55 (x —y0) ' (x = y0).

As a result, this learning algorithm will return 6 = LS yixi, which satisfies ]E[/H\] = p.
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4.1 bGMM setting

e Distribution: y ~ uniform{—1,1} and x | y ~ N (yu,0%1,), where ||u]|2 = 1 and
a% > 0.

o Linear classifier: § = sign(8'x). Given m samples, 8 is learned by minimizing the NLL
loss:

L x—y0)T(x— y8).

16, (x,9) = 5.

As a result, this learning algorithm will return 6 = LS yixi, which satisfies ]E[/H\] = p.

o Generative model: given m data points, let m, be the number of samples in class y,

~ Zyz:y X 52 Z my Zyi:y(wik‘ - ﬁyk)Q
Hy my Tk m my — 1
Y

)

Based on the learned parameters, we can perform GDA by generating new samples from
the distribution y ~ uniform{-1,1}, x | y ~ N (1,,, 5)), where 3 = diag(2, .. ., 02).
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4.2 Theoretical result

Theorem 7 (Generalization bound for bGMM)

Given a set S with mg i.i.d. samples from the bGMM distribution D and an augmented set
Sa with mg I.i.d. samples drawn from the learned Gaussian mixture distribution, then with
high probability at least 1 — 9, it holds that

71035%5) if fix d and mg = 0,
log?(m.s) s _

[T \{775) if fix d and mg = ©O(mg),
O\g/n%q if fix d and mqg = maorder,
d if fix mg.
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4.2 Theoretical result

Negative learning rate of GDA

Even though we estimate the sufficient statistics of the Gaussian mixture distribution directly,
we can not enjoy a better learning rate.
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4.2 Theoretical result

Negative learning rate of GDA
Even though we estimate the sufficient statistics of the Gaussian mixture distribution directly,
we can not enjoy a better learning rate.

.

Improvement at a constant level matters a lot when overfitting happens

When mg is small and d is large, the generalization error is awful. In this case, though GDA
can only improve it at a constant level, the effect is obvious due to the large scale of d.
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4.3 Simulation results
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Figure: Simulations results with g = (1/+/d,...,1/v/d)" and 0% = 0.6
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5.1 GAN setting

e Distribution: X C [0,1]¢ and Y = {—1,1}.
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e Distribution: X C [0,1]¢ and Y = {—1,1}.

o Deep neural classifier: L-layer MLP or CNN f(w,-) : Z — R, where w denotes its
weights and w; denotes the weights in the [-th layer. We assume that f(w,-) is n-smooth
and ||wl|2 is W;-bounded.
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@ Learning algorithm for the classifier: the loss function is the cross-entropy loss and it
is optimized by SGD. For the t-th step, we set the step size as ﬁ Besides, the total
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5.1 GAN setting

e Distribution: X C [0,1]¢ and Y = {—1,1}.

o Deep neural classifier: L-layer MLP or CNN f(w,-) : Z — R, where w denotes its
weights and w; denotes the weights in the [-th layer. We assume that f(w,-) is n-smooth
and ||wl|2 is W;-bounded.

@ Learning algorithm for the classifier: the loss function is the cross-entropy loss and it
is optimized by SGD. For the t-th step, we set the step size as ﬁ Besides, the total
iteration number 7' = O(mr).

o Deep generative model: GAN is parameterized by MLP and its architecture is the same
as that in Theorem 19 of [6] (somewhat strong assumptions). In addition, we assume
that each category is learned by a GAN, respectively.
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5.2 Theoretical result

Theorem 8 (Generalization bound for GAN)

Given a set S with mg i.i.d. samples from any distribution D and an augmented set Sg with
me i.i.d. examples sampled from the distribution D¢ (S) learned by GANSs, then for any fixed
0 € (0,1), with probability at least 1 — 6, it holds that

1

NG if fix W, L,d, let mg =0,
1
E|Gen-error| < (%) ! if fix W, L,d, let mg = m¥  qorr

2
dL2 (Hlel HVVle) if fix mg.
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5.2 Theoretical result

Slow learning rate with GDA

When we perform GDA, the order with regard to mg strictly becomes worse. Therefore, it
implies that when mg is rich, it is hopeless to boost the performance obviously by augmenting
the train set based on GANs. On the contrary, GDA may make the generalization worse.
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5.2 Theoretical result

Slow learning rate with GDA

When we perform GDA, the order with regard to mg strictly becomes worse. Therefore, it
implies that when mg is rich, it is hopeless to boost the performance obviously by augmenting
the train set based on GANs. On the contrary, GDA may make the generalization worse.

GDA matters a lot when overfitting happens

As the data dimension and model capacity become larger, the deep neural classifier gains
terrible generalization performance. In this case, a constant-level improvement of
generalization caused by GDA will be significant.
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5.3 Experimental design

GANSs are chosen to validate Theorem 8 empirically and the EDM is chosen to explore the
ability of the diffusion model.
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5.3 Experimental design

GANSs are chosen to validate Theorem 8 empirically and the EDM is chosen to explore the
ability of the diffusion model.

@ We choose a "good” GAN (StyleGAN2-ADA) to verify that GANs can not improve the
test performance obviously when the mg is approximately large (with standard
augmentation).
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performance when myg is small and awful overfitting happens (without standard
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5.3 Experimental design

GANSs are chosen to validate Theorem 8 empirically and the EDM is chosen to explore the
ability of the diffusion model.

@ We choose a "good” GAN (StyleGAN2-ADA) to verify that GANs can not improve the
test performance obviously when the mg is approximately large (with standard
augmentation).

@ We choose a "bad” GAN (DCGAN) to empirically verify that GANs can improve the test
performance when myg is small and awful overfitting happens (without standard
augmentation).

@ We conduct experiments on the SOTA diffusion model (EDM) and suggest that diffusion
models have a better Dy (D, D(S)) than GANs.
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5.4 Empirical results

X GDA (mg)
Generator Classifier ~ S.A.
0 100k 300k 500k 700k IM
x 8576 868 87.83 87.59 87.52 8647
ResNet18
v 944 9392 9341 09381 93.01 926
X 85 869 8793 87.56 87.17 86.28
cDCGAN [55] ResNet34
Vv 9459 9483 9421 9364 9369 93.18
X 82.85 8749 8859 86.67 863 852
ResNet50
V. 94.69 9443 9386 93.74 93.12 92.63
x 8576 9022 9133 91.37 9125 91.38
ResNet18
Vv 944 9468 9446 944 9411 9412
X 85 90.24 9123 9145 91.56 90.91
StyleGAN2-ADA [56] ResNet34
Vo 9459 9505 949 944 9443 9421
x 8285 90.85 9229 9229 9229 91.61
ResNet50
Vo 9469 9474 95.04 9456 9476 94.28
x 8576 928 94.87 9543 9624 96.28
ResNet18
v 944  96.15 9674 97.09 97.28 975
X 85 9342 9493 9559 96.14 96.44
EDM [30] ResNet34
V. 9459 9647 9696 9736 97.53 97.51
X 82.85 9329 9529 9595 96.1 96.64
ResNet50
Vv 9469 96.09 96.87 9728 97.6 97.74
Figure: Accuracy on the CIFAR-10 test set.
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Conclusion

Our contributions
@ We establish a general theoretical framework for the GDA in supervised learning.

@ We particularize the general results to the binary Gaussian mixture model (b GMM) and
generative adversarial nets (GANs).
@ We conduct experiments to validate our theoretical findings.

Future works (from easy to hard)
@ Other settings: semi-supervised learning, adversarial training, etc.

@ General non-i.i.d. learning:
o Dependence graph: improving Theorem 4 by sharper moment bounds.
o Mixing process: non-stationary stability bounds.

@ Understanding generative models: memorization, generalization, stability, etc.
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