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Abstract

Generative data augmentation, which scales datasets by obtaining fake labeled examples
from a trained conditional generative model, boosts classification performance in various
learning tasks including (semi‐)supervised learning, few‐shot learning, and adversarially
robust learning. However, little work has theoretically investigated the effect of gener‐
ative data augmentation. To fill this gap, we establish a general stability bound in this
not independently and identically distributed (non‐i.i.d.) setting, where the learned dis‐
tribution is dependent on the original train set and generally not the same as the true
distribution. Our theoretical result includes the divergence between the learned distri‐
bution and the true distribution. It shows that generative data augmentation can enjoy a
faster learning rate when the order of divergence term is o(max

(
log(m)βm, 1/

√
m)

)
, where m

is the train set size and βm is the corresponding stability constant. We further specify the
learning setup to the Gaussian mixture model and generative adversarial nets. We prove
that in both cases, though generative data augmentation does not enjoy a faster learning rate,
it can improve the learning guarantees at a constant level when the train set is small, which
is significant when the awful overfitting occurs. Simulation results on the Gaussian mixture
model and empirical results on generative adversarial nets support our theoretical con‐
clusions. Our code is available at https://github.com/ML‐GSAI/Understanding‐GDA.

Highlights

We establish a general theoretical framework for the GDA in the supervised
classification setting.
We particularize the general results to the binary Gaussian mixture model (bGMM)
and generative adversarial nets (GANs).
We conduct simulation and empirical experiments in both cases to validate our
theoretical findings.

Notations and definitions

We introduce some basic notations and definitions in learning theory.

Data:
Let X ⊆ Rn be the input space and Y be the label space.
We denote by D the population distribution over Z = X × Y.
Given a set S = {z1, z2, . . . , zm}, we define S\i as the set after removing the i‐th data point in the
set S, and Si as the set after replacing the i‐th data point with z′

i in the set S.
Learning algorithm:

Let A be a learning algorithm.
Let A(S) ∈ (Y)X be the hypothesis learned on the dataset S.

Evaluation:
Loss function ℓ : (Y)X × Z → R+.
True error RD(A(S)) with respect to the data distribution D is defined as Ez∼D[ℓ(A(S), z)].
Empirical error R̂S(A(S)) is defined as 1

m

∑m
i=1 ℓ(A(S), zi).

We then introduce some notations and definitions for the GDA.

Training generative model: given a dataset S with mS i.i.d. examples from D, we
can train a conditional generative model G with the model distribution DG(S).
GDA: we then obtain a new dataset SG with mG i.i.d. samples from DG(S), where
mG is a hyperparameter.
We denote the total number of the data in augmented set S̃ = S ∪ SG by mT .
We define the mixed distribution after augmentation as D̃(S) = mS

mT
D + mG

mT
DG(S)

Our goal

We interested in the generalization error Gen‐error = |RD(A(S̃))− R̂
S̃

(A(S̃))|. We will
derive a high probability bound for it by using the algorithmic stability technique.

General Generalization bound for GDA

Theorem 1(Generalization bound for GDA). Assume that A is a βm‐stable learning
algorithm and the loss function ℓ is bounded by M . Given an augmented set S̃, then
for any δ ∈ (0, 1), with probability at least 1 − δ, it holds that

|Gen‐error| ≲ mG

mT
MDTV

(
D,DG(S)

)
︸ ︷︷ ︸
Distributions’ divergence

+
M(√mS + √

mG) + mS
√

mGβmT

mT

√
log

(
1
δ

)

+
βmT (mS log mS + mG log mG) + mS log mSMT(mS, mG)

mT
log

(
1
δ

)
,

where T(mS, mG) = supi DTV
(
D

mG
G (S),DmG

G (Si)
)
.

Remark (Selection of augmentation size). An efficient augmentation size m∗
G,order with

regard to the order of mS can be defined as:

m∗
G,order = inf

mG

{
generalization error w.r.t. mixed distribution ≲ distributions’ divergence

}
.

Corollary 2(Sufficient conditions for GDA with (no) faster learning rate). Assume the
assumptions in Theorem 1 hold, then

if DTV
(
D,DG(S)

)
= o

(
max

(
log(m)βm, 1/

√
m)

))
, then GDA enjoys a faster

learning rate.
if DTV

(
D,DG(S)

)
= Ω

(
max

(
log(m)βm, 1/

√
m)

))
, then GDA can not enjoy a

faster learning rate.

Theoretical results for binary Gaussian mixture model

Theorem 3 (Generalization bound for bGMM). Given a set S with mS i.i.d. samples
from the bGMM distributionD and an augmented set SG with mG i.i.d. samples drawn
from the learned Gaussian mixture distribution, then with high probability at least 1−δ,
it holds that

|Gen‐error| ≲



log(mS)√
mS

if fix d and mG = 0,
log2(mS)√

mS
if fix d and mG = Θ(mS),

log(mS)√
mS

if fix d and mG = m∗
G,order, (No faster learning rate)

d if fix mS. (Improvement at a constant level)

Theoretical results for binary Gaussian mixture model

Theorem 4(Generalization bound for GAN). Given a set S with mS i.i.d. samples from
any distributionD and an augmented set SG with mG i.i.d. examples sampled from the
distribution DG(S) learned by GANs, then for any fixed δ ∈ (0, 1), with probability at
least 1 − δ, it holds that

E|Gen‐error| ≲


1√
mS

if fix W, L, d, let mG = 0,(
log(mS)

mS

)1
4 if fix W, L, d, let mG = m∗

G,order, (Worse rate)

dL2
(∏L

l=1 ∥Wl∥2
)2

if fix mS. (Improvement at a constant level)

Simulation results on binary Gaussian mixture model

We validate Theorem 3 on a binary mixture of Gaussian distribution.

1. We investigate the case that data dimension d is fixed (d = 1),
2. We conduct simulations in the case that mS is fixed as a small constant (mS = 10),
3. We design experiments to validate whether the explicit upper bound can predict

the trend of generalization error.

Figure 1. Simulations results with µ = (1/
√

d, . . . , 1/
√

d)⊤ and σ2 = 0.62

Empirical results on GANs

GANs are chosen to empirically validate Theorem 4.

1. We choose a ”good” GAN (StyleGAN2‐ADA) to verify that GANs can not improve
the test performance obviously when the mS is approximately large (with S.A.).

2. We choose a ”bad” GAN (DCGAN) to empirically verify that GANs can improve the
test performance when mS is small and awful overfitting happens (without S.A.).

Table 1. Accuracy on the CIFAR‐10 test set, where S.A. denotes standard augmentation.

Generator Classifier S.A.
GDA (mG)

0 100k 300k 500k 700k 1M

cDCGAN

ResNet18
× 85.76 86.8 87.83 87.59 87.52 86.47√

94.4 93.92 93.41 93.81 93.01 92.6

ResNet34
× 85 86.9 87.93 87.56 87.17 86.28√

94.59 94.83 94.21 93.64 93.69 93.18

ResNet50
× 82.85 87.49 88.59 86.67 86.3 85.2√

94.69 94.43 93.86 93.74 93.12 92.63

StyleGAN2‐ADA

ResNet18
× 85.76 90.22 91.33 91.37 91.25 91.38√

94.4 94.68 94.46 94.4 94.11 94.12

ResNet34
× 85 90.24 91.23 91.45 91.56 90.91√

94.59 95.05 94.9 94.4 94.43 94.21

ResNet50
× 82.85 90.85 92.29 92.29 92.29 91.61√

94.69 94.74 95.04 94.56 94.76 94.28

EDM

ResNet18
× 85.76 92.8 94.87 95.43 96.24 96.28√

94.4 96.15 96.74 97.09 97.28 97.5

ResNet34
× 85 93.42 94.93 95.59 96.14 96.44√

94.59 96.47 96.96 97.36 97.53 97.51

ResNet50
× 82.85 93.29 95.29 95.95 96.1 96.64√

94.69 96.09 96.87 97.28 97.6 97.74
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