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Abstract

Generative data augmentation, which scales datasets by obtaining fake labeled examples
from a trained conditional generative model, boosts classification performance in various
learning tasks including (semi-)supervised learning, few-shot learning, and adversarially
robust learning. However, little work has theoretically investigated the effect of gener-
ative data augmentation. To fill this gap, we establish a general stability bound in this
not independently and identically distributed (non-i.i.d.) setting, where the learned dis-
tribution is dependent on the original train set and generally not the same as the true
distribution. Our theoretical result includes the divergence between the learned distri-
bution and the true distribution. It shows that generative data augmentation can enjoy a
faster learning rate when the order of divergence term is o(max (log(m)Sm, 1/v/m)), where m
s the train set size and 3, is the corresponding stability constant. VWe further specify the
learning setup to the Gaussian mixture model and generative adversarial nets. We prove
that in both cases, though generative data augmentation does not enjoy a faster learning rate,
it can improve the learning guarantees at a constant level when the train set is small, which
is significant when the awful overfitting occurs. Simulation results on the Gaussian mixture
model and empirical results on generative adversarial nets support our theoretical con-
clusions. Our code is available at https:/github.com/ML-GSAIl/Understanding-GDA.

Highlights

= \We establish a general theoretical framework for the GDA in the supervised
classification setting.

= We particularize the general results to the binary Gaussian mixture model (bGMM)
and generative adversarial nets (GANS).

= We conduct simulation and empirical experiments in both cases to validate our
theoretical findings.

Notations and definitions

We introduce some basic notations and definitions in learning theory.

= Data:

= Let X C R" be the input space and Y be the label space.

= \\We denote by D the population distribution over Z = X x Y.

= Given aset S = {z1,2,,...,2,}, we define SV as the set after removing the i-th data point in the
set S, and S* as the set after replacing the i-th data point with z in the set S.

= Learning algorithm:

= Let A be alearning algorithm.
= Let A(S) € (Y)* be the hypothesis learned on the dataset S.

= Evaluation:

= Loss function £: (Y)* x Z — R..
= True error Rp(A(S)) with respect to the data distribution D is defined as E,.p[¢(A(S), z)).

= Empirical error SAQS(A(S)) is defined as = >~ £(A(S), z)).
We then introduce some notations and definitions for the GDA.

= Training generative model: given a dataset .S with mg i.i.d. examples from D, we
can train a conditional generative model G with the model distribution Dg(.5).

= GDA: we then obtain a new dataset S with m 1.i.d. samples from Do (.5), where
m¢ IS a hyperparameter.

* We denote the total number of the data in augmented set S = S U Sg by m.
= We define the mixed distribution after augmentation as D(S) = mi@ +- %—?DG(S)

m

Our goal

~

We interested in the generalization error Gen-error = |Rp(A(S)) — ﬂA%g(A(g))]. We will
derive a high probability bound for it by using the algorithmic stability technique.
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General Generalization bound for GDA

Theorem 1(Generalization bound for GDA). Assume that A is a §y,-stable learning
algorithm and the loss function ¢ is bounded by M. Given an augmented set .S, then
forany ¢ € (0,1), with probability at least 1 — 4, it holds that

M,/
|Gen-error| < @MDTV (D, D)) + (Vs +/mg) +m5\/mG5mT\/log (1)
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Remark (Selection of augmentation size). An efficient augmentation size mg order With
regard to the order of mg can be defined as:

\ J/
N

Distributions’ divergence
By (mglogmg + mglogmg) + mglogmgMT(mg, ma)

e
mr

where T(mg, mg) = sup; Dy (QDZG(S), @2@?(5@')).

mé)order — 717% {generalizaﬁon error w.r.t. mixed distribution < distributions’ divergence} .

Corollary 2(Sufficient conditions for GDA with (no) faster learning rate). Assume the
assumptions in Theorem 1 hold, then

* if Dpy (D, Da(S)) =o (max (log(m) Bm, 1/\/%))), then GDA enjoys a faster
learning rate.

" if Dy (D, D(S)) =0 (max (log(m)Bm, 1/\/ﬁ))), then GDA can not enjoy a
faster learning rate.

Theoretical results for binary Gaussian mixture model
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Simulation results on binary Gaussian mixture model

Theorem 3 (Generalization bound for bGMM). Given a set S with mg i.i.d. samples
from the bGMM distribution D and an augmented set S with m i..d. samples drawn
from the learned Gaussian mixture distribution, then with high probability at least 1 — 9,
it holds that

(log(mg) - -
\/27775) if ix d and mg = 0,
g™ (ms) it fix d and mex = O
|Gen-error| < 4 1 VA Thxdaandme (ms),
O?/(mﬁg if fix d and mg = mg; 4. (NO faster learning rate)
d if ix mg. (Improvement at a constant level)

Theoretical results for binary Gaussian mixture model

We validate Theorem 3 on a binary mixture of Gaussian distribution.

1. We investigate the case that data dimension d is fixed (d = 1),
2. We conduct simulations in the case that mg is fixed as a small constant (mg = 10),

3. We design experiments to validate whether the explicit upper bound can predict
the trend of generalization error.
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Figure 1. Simulations results with g = (1/V4d, ..., 1/v/d)T and 6% = 0.6

Empirical results on GANs

60 0

100

(f) (d,mg) = (50, 10), prediction

Theorem 4(Generalization bound for GAN). Given a set S with mg i.i.d. samples from
any distribution D and an augmented set Sz with m i..d. examples sampled from the
distribution D(S) learned by GANs, then for any fixed § € (0, 1), with probability at
least 1 — 9, it holds that

(1
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(52

g

if ix W, L, d, let me = 0,

E|Gen-error| < 4 if ix W, L,d, let mg =mg, 4. (Worse rate)

2
dL? (Hle HWZHQ) if ix mg. (Improvement at a constant level)
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GANs are chosen to empirically validate Theorem 4.

1. We choose a "good” GAN (StyleGAN2-ADA) to verify that GANs can not improve

the test performance obviously when the mg is approximately large (with S.A.).

2. We choose a "bad” GAN (DCGAN) to empirically verify that GANs can improve the

test performance when mg is small and awful overfitting happens (without S.A.).

Table 1. Accuracy on the CIFAR-10 test set, where S.A. denotes standard augmentation.

. GDA (m)

Generator Classifier S.A. 0 100k 300k 500k 700k 1M
eeneg X 8576 868 87.83 8759 87.52 8647

J 944 9392 9341 9381 93.01 92.6
x 85 869 87.93 87.56 87.17 86.28
CDCGAN ResNet34 /0450 94.83 94.21 93.64 93.69 93.18
ooty X 8285 87.49 88.59 8667 863 852
V. 94.69 94.43 93.86 93.74 93.12 92.63
ooy X 8576 9022 9133 91.37 91.25 91.38
J 944 9468 9446 944 9411 94.12
« 85 9024 91.23 91.45 91.56 90.91
SYIRGANZ-ADA ResNets4 /0450 9505 949 944 94.43 9421
oenecg X 8285 9085 9229 92.29 92.29 9161
V. 94.69 94.74 9504 94.56 94.76 94.28
ooy X 8576 928 9487 9543 96.24 9628

V944 9615 96.74 97.09 97.28 97.5
x 85 9342 9493 9559 9614 96.44
=Dl ResNet3t ) 94,59 96.47 96.96 97.36 97.53 97.51
ety X 8285 93299529 9595 961 96.64
V. 94.69 9609 96.87 97.28 97.6 97.74
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