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Abstract

A large‐scale deepmodel pre‐trained onmassive labeled or unlabeled data transfers well to down‐
stream tasks. Linear evaluation freezes parameters in the pre‐trained model and trains a linear
classifier separately, which is efficient and attractive for transfer. However, little work has in‐
vestigated the classifier in linear evaluation except for the default logistic regression. Inspired
by the statistical efficiency of naïve Bayes, the paper revisits the classical topic on discrimina‐
tive vs. generative classifiers [2]. Theoretically, the paper considers the surrogate loss instead
of the zero‐one loss in analyses and generalizes the classical results from binary cases to mul‐
ticlass ones. We show that, under mild assumptions, multiclass naïve Bayes requires O(log n)
samples to approach its asymptotic error while the corresponding multiclass logistic regression
requires O(n) samples, where n is the feature dimension. To establish it, we present a multiclass
H‐consistency bound framework and an explicit bound for logistic loss, which are of independent
interests. Simulation results on a mixture of Gaussian validate our theoretical findings. Experi‐
ments on various pre‐trained deep vision models show that naïve Bayes consistently converges
faster as the number of data increases. Besides, naïve Bayes shows promise in few‐shot cases
and we observe the “two regimes” phenomenon in pre‐trained supervised models. Our code is
available at https://github.com/ML‐GSAI/Revisiting‐Dis‐vs‐Gen‐Classifiers.

Highlights

We challenge the default logistic regression in the linear prediction setting. Specially, we
study the comparison between the logistic regression and naive Bayes.
We consider the practically used logistic loss rather than assuming the empirical risk
minimization (ERM) can be performed on zero‐one loss as [2].
Technically, we propose a multiclassH‐consistency framework with tightness guarantee.
In addition, we obtain an explicit bound for the logistic loss and zero‐one loss.
We discuss the empirical implications of our theory in various deep pre‐trained models.

Notations and definitions

Similarly to [2] and [1], we introduce some notations and definitions.

Data:
Let X ⊆ [0, 1]n be the input space and Y = {1, · · · , K} be the label space.
We denote by D the population distribution over Z = X × Y.
We denote by p(x) the conditional distribution of Y given x, i.e., py(x) = P(Y = y|X = x).
Training set S with m i.i.d. examples sampled from the distribution D.

Hypotheses:
We mainly consider the constrained linear hypotheses:

Hlin = {x → h(x) : hy(x) = ⟨wy, x⟩ + by, ∥wy∥2 ≤ W, |by| ≤ B, y ∈ Y}.

We denote Hall by the set of all measurable functions.
Let hDis,m and hGen,m denote the hypothesis returned by logistic regression and naïve Bayes.
Let hDis,∞ and hGen,∞ be the corresponding asymptotic version.

Some risks based on loss function ℓ : R × Y → R+.
Zero‐one loss: ℓ0−1(h(x), y) = 1h(x)̸=y, logistic loss: ℓlog(h(x), y) = log2(1 + e−yh(x)).
Generalization error: Rℓ(h) = Ez∼D[ℓ(h(x), y)], minimal generalization error: C∗

ℓ,H(x) = minh Rℓ(h)
Conditional risk: Cℓ(h, x) =

∑K
y=1 py(x)ℓ(h(x), y), minimal conditional risk: C∗

ℓ,H(x) = infh∈H Cℓ(h, x).
Excess conditional risk: ∆Cℓ,H(h, x) = Cℓ(h, x) − C∗

ℓ,H(x), Minimizability gap: Mℓ,H = R∗
ℓ,H − Ex

[
C∗

ℓ,H(x)
]
.

H‐consistency bound: it is in the following form that holds for all h ∈ H, D ∈ P and some
non‐decreasing function f : R+ → R+:

Rℓ2(h) − R∗
ℓ2,H

≤ f (Rℓ1(h) − R∗
ℓ1,H

).
If P is composed of all distributions over X × Y , we call it a distribution‐independent bound.

MuticlassH-consistency framework

We propose a multiclass H‐consistency framework with the tightness guarantee, which in‐
cludes the binary one [1] as a special case.

Definition 1 (Multiclass H‐estimation error transformation). The multiclass H‐estimation
error transformation of a surrogate loss ℓ is defined on t ∈ [0, 1] as Jℓ(t) =
inf ŷ∈Y ,p∈Pŷ(t),x∈X ,h∈Hŷ(x) ∆Cℓ,H(h, x, p). Here Hŷ(x) := {h ∈ H : argmaxy∈Y hy(x) = ŷ}
is a collection of hypotheses that predicts x as class ŷ. Pŷ(t) := {p ∈ ∆K : maxy py − pŷ = t} is
a subset of K‐dimensional simplex indexed by classes and the gap between the max compo‐
nent and class‐indexed component of p.

Theorem 1 (Distribution‐independent H‐consistency bound). Suppose that H satisfies that
{argmaxy∈Y hy(x) : h ∈ H} = {1, . . . , K} for any x ∈ X . If there exists a convex function
g : R+ → R with g(0) = 0 and g(t) ≤ Jℓ(t). Then it holds for any h ∈ H and any distribution D

that
g

(
Rℓ0−1(h) − R∗

ℓ0−1,H
+ Mℓ0−1,H

)
≤ Rℓ(h) − R∗

ℓ,H + Mℓ,H.

Theorem 2 (Tightness guarantee). If Jℓ(t) is convex with Jℓ(0) = 0, then for any t ∈ [0, 1] and
δ > 0, there exist a distribution D and a hypothesis h ∈ H such that Rℓ0−1(h) − R∗

ℓ0−1,H
+

Mℓ0−1,H = t and Jℓ(t) ≤ Rℓ(h) − R∗
ℓ,H + Mℓ,H ≤ Jℓ(t) + δ.

Theoretical results for logistic regression

Proposition 1 (Generalization bound for logistic loss). For any fixed δ0 ∈ (0, 1), with probability
at least 1 − δ0, the following holds:

Rℓlog(hDis,m) ≤ Rℓlog(hDis,∞) + O(

√
K3n
m

).

Assumption 1 (Mild assumption in the context of deep representation learning). The approx‐
imate error of the logistic loss is bounded by a small constant ν < 1

2( e2B−1
e2B+K−1)2. Namely,

argminh∈Hlin Rℓlog(h) − argminh∈Hall Rℓlog(h) ≤ ν, which implies that Mℓlog,Hlin ≤ ν.

Theorem 3 (H‐consistency bound connects ℓ0−1 and ℓlog). If Rℓlog(h) − R∗
ℓlog,Hlin

+ Mℓlog,Hlin ≤
1
2( e2B−1

e2B+K−1)2, then for any distribution satisfying maxy py(x) − miny py(x) ≤ e2B−1
e2B+K−1 for all x,

it holds that Rℓ0−1(h) − R∗
ℓ0−1,Hlin

+ Mℓ0−1,Hlin ≤
√

2(Rℓlog(h) − R∗
ℓlog,Hlin

+ Mℓlog,Hlin)
1
2.

Corollary 1 (Sample complexity of logistic regression). Suppose that Assumption 1 holds. Then,
it suffices to pick m = O(n) training samples such thatRℓ0−1(hDis,m) ≤ Rℓ0−1(hDis,∞)+ϵ0 hold

with probability 1 − δ0, for any fixed ϵ0 ∈ [
√

2ν, e2B−1
e2B+K−1] and δ0 ∈ (0, 1).

Theoretical results for naive Bayes

Theorem 4 (Generalization bound and sample complexity of naive Bayes, informal). Under
some mild assumptions that are similar to [2], with probability at least 1 − δ0:

Rℓ0−1(hGen,m) ≤ Rℓ0−1(hGen,∞) + K(K − 1)
2

(
G̃
(
O(

√
1
m

log( n

δ0
))
)

+ δ

)
,

where G̃(τ ) is polynomially small in n. Then, it suffices to pick m = O(log n) training samples
such that Rℓ0−1(hGen,m) ≤ Rℓ0−1(hGen,∞) + ϵ0 hold with probability 1 − δ0, for any ϵ0 ∈ (0, 1)
and δ0 ∈ (0, ϵ0

K2].

Experimental results

Simulations. We validate our theory on amixture of Gaussian distribution. For a fixed feature
dimension n, we increase the number of samples m and record the performance.

Figure 1. Multiclass (K = 5) simulation results. Empirically, logistic regression and naïve Bayes require O(n) and
O(log n) samples to approach the corresponding asymptotic error respectively.

Deep learning results. We systematically compare logistic regression and naïve Bayes based
on various pre‐trained vision models. Notably, naïve Bayes approaches its asymptotic error
much faster than logistic regression in all settings, which is consistent with our theoretical
results. We also observe the ”two regimes” phenomenon [2] when model is pre‐trained in a
supervised manner, which shows the promise of naïve Bayes when training data is limited.

(a) ViT‐B16 (b) ResNet‐50

Table 1. Convergence comparison between multiclass logistic regression and naïve Bayes. “NB faster” means
naïve Bayes approaches its asymptotic error faster.

Method NB faster/ Two regimes
CIFAR10 CIFAR100

ViT
√

/
√ √

/
√

ResNet
√

/
√ √

/
√

CLIP
√

/
√ √

/
√

MoCov2
√

/ ×
√

/ ×
SimCLRv2

√
/ ×

√
/

√

MAE
√

/
√ √

/ ×
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