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Definition of ICL

* |[CL is the ability of foundation models to learn to perform downstream task
based on the context without any explicit updates to parameters.

. (Review: Delicious food!  Sentiment: Positive |
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Foundational Challenges in Assuring Alignment and Safety of Large Language Models, arxiv, 2024
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Emergence of ICL
Transformer architecture (Mamba, RWKV...?)

* Transformer (decoder) is the underlying architecture of foundation models.

* Parallel computing Output

Probabilities

* Long distance modeling

 Unifying different modals...
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Attention Is All You Need, NeurlPS, 2017
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Emergence of ICL
Autoregressive (AR) pretraining

* AR pretraining (next-token prediction) is a simple yet profound SSL method.

* maximum likelihood training, or minimizing KL(data distribution||model distribution).
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| Output Tokens |
f f { { - o T
Decoder Block ) [{ ) [{ i]
Deoodgr Block ) > B “ T B ¥ I B
e 5 [e T chicken | crossed | e | e T stdent | aced | the ]
t t t 4 £ ) }
( Token/Position Embedding ) t : } ‘ i 3 x

F 1
l I 1 I T = T
& Input Tokens } \

Unlabeled Textual Corpus

Sample Data

/)

o The chicken crossed the ...
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Language Models are Few-Shot Learners, NeurlPS, 2020
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Emergence of ICL
Model Warmup (optional)

* Warmup adjusts pretrained foundation models before ICL inference.
* It does not aim the specific tasks but enhances the overall ICL capability of the model.

* We only focus on MetalCL in this talk, though instruction/symbol tuning... are more popular.

Meta-training Inference

Task C' meta-training tasks An unseen target task

Training examples (x1,41), - -, (Tk, Y& ),

Data given  Training examples 7; = {(T;y;)}ﬁl Vie[l,Cl (Ni>k) Test input

For each iteration,
1. Sample task 7 € [1,C]
2. Sample k + 1 examples from 7;: (z1,y1), -+, (Tra1, Yri1)
3. Maximize P(yr+1|T1, Y1, s Ths Yks Tht1)

Objective argmaxcEcP(chl, Uiy 3 They Yk, T)

MetalCL: Learning to Learn In Context, ACL, 2022
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Mechanisms of ICL?

Mesa-optimization hypothesis

* Hypothesis: the forward pass of the trained transformer is equivalent to
optimizing an inner objective function in-context: length generalization!?

* How to study this? What is the methodology of fundamental research?
* Conduct empirical study and summarize common phenomena.

* Establish theory to interpret these phenomena.
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Methodology

Empirical study & theory

physical phenomenon

Machine learning

Deep learning

Deep learning theory, Taiji Suzuki, 2024
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» Riemannian geometry
« Quantum mechanics

» Functional analysis

Mathematics

Several mathematicians/physicists
join the ML community.

+ Prob. theory « Statistics

« Functional anal. «  Optimization
+ Wasserstein geom. * Numerical

« Diffusion equation analysis

Mathematics
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Empirical findings

A case study on linear functions

* We train a transformer (GPT-2) with (AR) MetalCL objective from scratch.

Training data
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What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Empirical findings

A case study on linear functions

* Given clean test prompt, transformer closely matches the optimal least squares
estimator.

== Transformer

== | east Squares

==== 3-Nearest Neighbors
== Averaging

squared error

0 10 20 30 40
in-context examples

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Empirical findings
A case study on linear functions

* Given clean test prompt, transformer closely matches least squares estimator.

e ground truth == #dims / 2 in-context examples == #dims * 2 in-context examples
= = ground truth projected = #dims in-context examples
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What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Empirical findings

A case study on linear functions

* Is trained transformer really the same as LSE?: further try OOD settings.

Prompting strategy DE{E“‘ + Df,fﬁt Df{aj“ + DB,‘?St Dfﬁéry # foﬁt
Skewed covariance v

d /2-dimensional subspace v

Scale inputs v

Noisy output v

Scale weights v

Different Orthants v v
Orthogonal query v
Query h'natches example v

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Empirical findings

A case study on linear functions

* Trained transformer is not exact LSE, but robust to some distribution shifts.
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in-context examples
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squared error
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What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Empirical findings
A case study on linear functions

* Trained transformer is not exact LSE, but robust to some distribution shifts.

1.0 =gg========== scale
5 0.8 — 12
@ 0.6 -1
8 L] 2
§ 0.4 — 3
o = Least Squares
“ 0.2
0.0 ———
0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples
(a) scaled x, Transformer (b) scaled w, Transfomer

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurlPS, 2022
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Mesa-optimization hypothesis
Transformers perform gradient descent to approximate LSE!?

* Details of experiments is placed in next subsection.

* Hypothesis: trained transformers perform GD to minimize some inner objective
in-context.

tolz uer i
8(Tquery) = Gradient descent

Find @
V) fo(x) context 0.2 4 Trained Transformer
s.t. tﬂ(mqlmry; ]—) ) ~ yqu(‘.ry &
o
ﬁ 4
> Transformer v 0.14 )
w

_ ) .
-'l:..'—l—lJ_Il
llllll -

Find 0 0 20 40
st (W = T L(D™)) fo @ien) & Yoo peontext GD Steps / Transformer Layers

Transformers Learn In-Context by Gradient Descent, ICML, 2023
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Mesa-optimization hypothesis
Transformers perform gradient descent to approximate LSE!?

* Theoretically, with suitable embeddings, the forward pass of one-layer linear
attention can express one step of GD on the OLS problem over the context

r X _NT rd - - - - - -
L(W) = ﬁ Siey [[Wa; — yi||? with learning rate 1) which yields weight change

N
AW = —pVw L(W) T; (Wa; —

N _

x; T 7 €T o I, O x; I 0Y (2
() =G = (G 5) G) = (G ) GG 0 G
[ n 0 AN AN 0

)25 () () () -()+ ()

Transformers Learn In-Context by Gradient Descent, ICML, 2023
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Mesa-optimization hypothesis
Transformers perform gradient descent to approximate LSE!?

* Empirically, the forward pass of trained one-layer linear attention can be captured
by one step of GD on the OLS problem over the context, even in OOD setting.

0.40 2.5 % Test on larger inputs
= GD = Preds diff = Model cos 101 ¥ GD
Tralned TE s Model diff | 1 00 e Interpolated V¥ oD ¥
0.35 + ’ 0.81 == TrainedTF @ Interpolated *
E1s Lo.05 £ ag + TenedTF o
2 0.30 S o B0 » 10° -
S = 0o0s &
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Transformers Learn In-Context by Gradient Descent, ICML, 2023
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Theoretical results

Meta- Trained Transformers is a mesa-optimizer

* Architecture: One-layer linear self-attention module with residual.

WEE)TWCE

farn(E;WE WO WY WH)y=E+WFPWVYE - softmax ((

@ Drop out softmax operator

ETWHEQE
P

p

fisa(E:0)=E+ WP E.

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer
* Data: x;, Xgyery ~ N(0,A) and w ~ N (0, I).

* Embeddings (important): stack historical linear problem examples, and add the
query input with 0 left for storing the prediction result.

B — L1 L2 Lr N L1 query
o (Wr,xr1) (Wryxr9) -+ (Wr, 27 N) 0

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

* Population loss.

L(0) = PlE:go L(0) = ;_)E?_L’T.C-'.TT,]_-'“ T N T query [(ys’.query — (w-, QITT.query>) }

* We use gradient flow to optimize the loss function.

| |
So=_vL®).

dt



Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

* |nitialization.We let the zero matrices in the before theoretical construction as
zero at the initial time.

Assumption 3.3 (Initialization). Let ¢ > 0 be a parameter, and let © € R be any matrix satisfying
||(%)(%)T||F = 1 and ON # 0;4xq. We assume

. . oY1l
WY (0) = o (ng’ 0;’) - W) =0 (”.E Ood) . (3.10)

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

« Convergence results. Let I’ = (1 + %) A+ %tr(A)Id , we have

Then gradient flow converges to a global minimum of the population loss (3.8). Moreover, W and Wh€
- 7 PV K .
converge to WEV and W, « respectively, where

=1 o, _. i [044q O,
1 ‘ H--’f"' _ [tr (r_g)] L dxd Yd
0) 0 0, 1

[
W

WhE? = [tr (I72)] (4.1)

* When A = g%];,then T = (1 + %) o214, which exactly matches the theoretical

construction to perform one step of GD.

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

* In general, trained transformer implement one step of preconditioned GD, and
optimally solve the linear regression task with long enough prompts.

* It is not LSE yet.

1 M 1 T -1
N _ A izt Ti x] + ﬁ**’-'query*i’-'query i E? | T w r 04 Tquery
Yquery = Ud 1 M T _ -

u 2i=1 w' u E;, 1w tw 03 0 0
| M
quewr 1 ( Z‘_r_i;r;) w. One step size preconditioned GD for (4.2)
M l
i=1 the OLS problem over context!

When the lenﬂth of 'plOIT‘lp[% seen during training NV is large, T~! ~ A~1, and when the test prompt length

M is large, 57 Zz | T zT ~ A, so that Yquery ~ r;ruery Thus, for sufficiently large prompt lengths, the

trained transformer indeed in-context learns the class of linear predictors.

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

* Trained transformer is robust to task shifts.

For example, consider a prompt corresponding to a noisy linear model, so that the prompt consists of
a sequence of (x;, y;) pairs where y; = (w, x;) + ¢; for some arbitrary vector w € R? and independent
sub-Gaussian noise ;. Then from (4.7), the prediction of the transformer on query examples is

1 M 1 M 1 M
-~ . A—1 . R A—1 U I . A—1 R
Yquery ~ ;I-"querg,-'A ( Vi Zyi.:;) — J.-queryi\ (?U Z*’f-i*'f-:: ) w —+ .I_.query.i\. ( Vi Z“i;rf) _
.i_

i=1 i=1 =1

I

1.00
0.75
0.50 \\,
0.25 .
e —
0.00
0 10 20 30 40

in-context examples

(b) Noisy linear regression

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL
Meta- Trained Transformers is a mesa-optimizer

* Trained transformer is robust to query shifts.

Query shifts. Continuing from (4.7), since y; = (w, z;),

1 M
ar -"‘\...!.-T _1 .-._.-.T YT
Yquery =~ ’I’queryA f E P w.
i=1

From this we see that whether query shifts can be tolerated hinges upon the distribution of the a;’s. Since

Diramn — Drest if M is large then

- ~ T —1A. — ,
Yquery = Tqueny A Aw = Tgueryw.

-

1.50 1.50 v
1.25 \/\/\/\—M 1.25 \’\

1

5 1.00 - 1.00 =<

(]
- 0.75
2
® 0.50
o
(%]

0.25

0.00

0 5 10 15

in-context examples

(d) orthogonal query

0.75

0.50
0.25

0.00

0 10 20 30 40
in-context examples

(e) query matches in-context example

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Theoretical results on Meta ICL

Meta- Trained Transformers is a mesa-optimizer

* Trained transformer is not robust to query shifts.

Covariate shifts. In contrast to task and query shifts, covariate shifts cannot be fully tolerated in the
transformer. This can be easily seen due to the identity (4.3): when D" =£ DIt then the approximation
in (4.8) does not hold as % Ef‘il ;.r:z—;_r:iT will not cancel T=! when M and N are large. For instance, if we
consider test prompts where the covariates are scaled by a constant ¢ # 1, then

_ ~ 1 2 2.7 S
Yquery ~ rqueryA (’l[ E ;T ) query\. AW = T queny W F Tquery U

1.50

1.0
1.25
= = 0.8
e 1.00 =
] v 0.6
‘QIE 0.75 E
% 0.50 g 04
2 a
0.25 0.2
0.00 0.0
0 10 20 30 40 0 10 20 30 40
in-context examples in-context examples
(a) skewed covariance (a) scaled x, Transformer

Trained Transformers Learn Linear Models In-Context, JMLR, 2024
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Summary on Meta ICL

* Empirical findings: practical transformer closely matches the optimal LSE.

* Mesa-optimization hypothesis: trained transformer perform GD-based algorithm.
* A theoretical construction without optimization guarantee.

* Empirical evidence on one-layer linear attention.

* Non-trivial theoretical framework based on feature learning theory.
* Trained one-layer linear attention do implement GD!

* Interpret the practical transformer in OOD settings.

2024/6/6
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Mesa-optimization hypothesis
Transformers perform gradient descent to approximate LSE!?

* Hypothesis: Autoregressively trained transformers also perform GD to minimize
some inner objective in-context.

J— A

+

Autoregressive Transformer f,

- (i) Create mesa-dataset (ii) Define mesa-objective (iii) Mesa-optimize
- - select input-output pairs = learn internal model = improves over sequence
84 predictive of the future based on D" length and layer depth

dew uonuaye-jag

) NN AN %, 4
et AR N B )
82 075 '\“::“":::“x;:‘*- \\\ N =\ 3,y
- " EEEnnnnt | I NN AL N5,
: TS \
: # a3 — \\ N \ é’(
g Iy N + \ ®,
— a5 - ( N\ 3 >
= oo f { \ - -
8 E] [ ~
._ - MNER(OZ20\ N
8 —050 / /_\5___\5 Y e =
5 o /T =~
e O\ — | |
-t D—Dl o0 - 125 0.50

Dtmesa = { (s1,82),83 o (S1-2,8: 1), 8¢ } Lf (Dtmesu; W) Wt = arg IIliIlW Lt (Dtmesa; W)

L[§c+1 = fa(b’l:t; Wt))

Uncovering mesa-optimization algorithms in Transformers, ICLR-W, 2024
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Mesa-optimization hypothesis
Transformers perform gradient descent to approximate LSE!?

* Theoretically, with suitable embeddings, the forward pass of one-layer linear
attention can express one step of GD on the OLS problem over the context.

* Empirically, the forward pass of autoregressively trained one-layer linear attention
can be captured by one step of GD.

\
L

A B
4 1.5
Autoregressive Transformer f,
> Mesa—optip’\ize
Wy = arg miny L, (W) a 1.0
& 3
» Construct mesa-objective t‘l"
— 2
Le(W) = Y0 5llse 1 — W] @
E 0.5
Create mesa-dataset
pmesa — {[31182 82,83]1"'1[3:7133:}
0.0
FF ¢+t t t & & t f
[coifen) sl ) - e ) |

m— RevAlg-1
=== |nterpolation
— Mesa

= |inear-SA

1

2000
Training steps

Uncovering mesa-optimization algorithms in Transformers, ICLR-W, 2024
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Theoretical analyses

Mesa-optimization in Autoregressively trained transformers

On Mesa-Optimization in Autoregressively Trained
Transformers: Emergence and Capability

Chenyu Zheng', Wei Huang?, Rongzhen Wang', Guogiang Wu?,
Jun Zhu*, Chongxuan Li'*
! Gaoling School of Artificial Intelligence. Renmin University of China
2 RIKEN AIP ? School of Software, Shandong University
4 Dept. of Comp. Sci. & Tech., BNRist Center., THU-Bosch ML Center, Tsinghua University
{cyzheng,wangrz,chongxuanli}@ruc.edu.cn; wei.huang.vr@riken. jp;
guogiangwu@sdu.edu.cn; dcszj@mail.tsinghua.edu.cn

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses
Sequence distribution

* Initial point x; ~ D, , we discuss its impact on trained transformer.

* |-st order AR process: x;,1 = Wx;.

* W is uniformly sampled from diagonal unitary complex matrix.

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses
Architecture

* Architecture: One-layer linear causal self-attention module with residual.

fi(E;:0)=¢e + WPVEf '

EWEQe,

Pt

* Embeddings: natural extension of that in MetalCL setting. O is left for storing

prediction results.

Ud Ud'
Et — [81 ..... €t> — | £y I9
Lo I

Od
Ly
L1

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses
Loss function and initialization

* Loss function: we use gradient flow on next-token prediction loss.

t=2 t=2

T—1
=" L.(6) ZE;M [—Hyf — @4l ]

* |nitialization: we let the zero matrices in the ideal theoretical construction as zero
at the initial time.

Assumption 3.1 (Initialization). At the initial time T = 0, we assume that
Oixd Odxa 0Oaxd .

— Od-}(r_’l Oierf OrJIXHr y W (0) —
Oixa aola Ogxa

Ouxda bolg 0Og4xa
Ouxa Ouxa Ogxd
Ouxa Odxa Ogxd

WI{{Q [0)

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses
Existing results

* X1 = 1d'
* Red matrices are all diagonal.

* Only focus on the property of global minima, without convergence guarantee.

Proposition 2 (In-context autoregressive learning with gradient-descent). Suppose
assumptions 1 and 2. Loss (2) is minimal for ay + a4 = by = 0 and azb; =
T
E I'ﬂEI.'_'{ T
Dy (T2+(d NT)
gradient descent starting from the initialization A = 0, with a step size asymptotically

equivalent to % with respect to 1Tax -
max

Furthermore, the optimal in-context map 1'g« is one step of

How do Transformers perform In-Context Autoregressive Learning?, ICML, 2024

2024/6/6

36



Theoretical analyses

When does dynamics converge to ideal theoretical construction?

Assumption 4.1 (Sufficient condition for the emergence of mesa-optimizer). We assume that the

. . . . - . . . . ) 1712 ) ,T?t - \
distribution Dy, of the initial token x; € R satisfies Emlwpml [;1,.1.51;,.1,&_.2 x -.1,.1?..?1} = 0 for any
subset {iy,....i, | n < 4} of [d], and ro, .. .r,, € N. In addition, we assume that r, = E[x7 ],

tip = E[aY;] and ky = 3 Blai;a1,] are finite constant for any j € [d].

* We note that any random vectors whose coordinates are i.i.d. random variables
with zero mean satisfy this assumption, such as N (0, I;).

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses

Convergence results

* Autoregressively trained transformer converges to the ideal case.

Theorem 4.1 (Convergence of the gradient flow, proof in Section |5). Consider the gradient flow

of the one-layer linear transformer (see Eq.|1) over the population AR pretraining loss (see Eq.|2)).

Suppose the initialization satisfies Assumption|3.1, and the initial token’s distribution Dy, satisfies
Assumption |4.1, then the gradient flow converges to

— =" e

Wy Wy© (ded ded) .
KQ KQ als  Odxa ( 12 13
W™ Wi "

Though different initialization (aq, by) lead to different (a, b), the solutions’ product ab satisfies
Il

- T—1
. K3 1
R2 T 725 2u=2 71

ab =

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses

Convergence results

* Autoregressively trained transformer implements GD for the OLS problem.

Corollary 4.1 (Trained transformer as a mesa-optimizer, proof in Appendix A.3
holds. When predicting the (t+1)-th token, the trained transformer

same precondition of Theorem

4.1

). We suppose that the

obtains W by implementing one step of gradient descent for the OLS problem Loys (W) =

S T i — Way

2 starting from the initialization W = 04, 4 with a step size

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

2024/6/6
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Theoretical analyses
Capability of Mesa-optimizer

* Mesa-optimizer fails to recover process with normal initial token.

T‘EE‘._]- *
Zi:l Lidl;

g = W | ab
yTte ! Tte _ l

LTe

Proposition 4.1 (AR process with normal distributed initial token can not be learned, proof in
Appendix|A.4). Let Dy, be the multivariate normal distribution N (0. 2T 1) with any a2 > 0, then
the "simple" AR process can not be recovered by the trained transformer even in the ideal case with
long enough context. Formally, when the training sequence length T}, and test context length T}. are
large enough, the prediction from the trained transformer satisfies

Tie—1 *
Z-;::l £L;d;

E,, |ab

1
— -1y, Ty T — +00.
5

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024
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Theoretical analyses

When does mesa-optimizer recover sequence!

* The sufficient and necessary condition for learning the true distribution.

Assumption 4.2 (Condition for success of mesa-optimizer). Based on Assumption|4.1, we further

Tie—1 *
suppose that -t =‘=——xr, — xT, foranyx,and W, when 1. is large enough.
e - i

* A toy example that satisfies the assumption.

Example 4.1 (sparse vector). If the random vector zz; € R is uniformly sampled from the candidate
set of size 2d {£(c,0... .. 0)".+£(0.c,....0)",£(0.....0,¢)"} for any fixed ¢ € R, then the
distribution D, satisfies Assumption|4.2| The derivation can be found in Appendix|A.5
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Theoretical analyses

Simulations

* Simulations verify our theoretical results.

0 — (@0, bo) = (0.1, 0.1) L£08 —— (30, bo) = (0.1,0.1)
35 — (anbo)= (05,15 | = —— (a0, bo) =(05,1.5)
2 3.0 — (30. bo) = (2.0, 2.0) s 06 —— (30.bo) =(2.0.2.0)
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g 20 B 04
g 1.5 &
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& 10 - 5 02
0.5 — 5 -
00l —— 0.0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch
(a) Gaussian with o = 0.5, dynamics of ab (b) Gaussian with o = 0.5, ratio of yr,, , /T,
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3.5 10 —— (a80.bg) = (0.5, 1.5)
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3 172]
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g s (a0, bo) = (0.1, 0.1) g 4
S 1.0 —— (a0, bo) =(0.5, 1.5) =
0.5 —— (a0, bp) =(2.0,2.0) 2
——— 2 _
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(c) Examplewith ¢ = 0.5, dynamics of ab  (d) Examplewith c=0.5, |Yre_y — TTee ||%
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Theoretical analyses

Simulations

* We also explore the case beyond the data condition, and suggest it will perform
preconditioned GD in general.
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Background on practical ICL
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Future works
Both empirical and theoretical directions

* Observe and interpret more complex architectures with different embeddings
* |-layer: softmax SA, multi-head SA
* 2-layer:looped SA, independent LSA, LSA+MLP, Layernorm
* Transformer block, full transformer

* Asymptotic theory: infinite width/depth

* Observe and interpret more data settings
* Noise, imbalanced...

* Discrete sequence

* Better architecture to perform mesa-optimization

e Relation between AR ICL and Meta ICL
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