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Definition of ICL

Foundational Challenges in Assuring Alignment and Safety of Large Language Models, arxiv, 2024

• ICL is the ability of foundation models to learn to perform downstream task 
based on the context without any explicit updates to parameters.
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Emergence of ICL

Attention Is All You Need, NeurIPS, 2017

Transformer architecture (Mamba, RWKV…?)

• Transformer (decoder) is the underlying architecture of foundation models.
• Parallel computing 
• Long distance modeling
• Unifying different modals…
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Emergence of ICL

Language Models are Few-Shot Learners, NeurIPS, 2020

Autoregressive (AR) pretraining 

• AR pretraining (next-token prediction) is a simple yet profound SSL method.
• maximum likelihood training, or minimizing KL(data distribution||model distribution).
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Emergence of ICL

MetaICL: Learning to Learn In Context, ACL, 2022

Model Warmup (optional)

• Warmup adjusts pretrained foundation models before ICL inference.
• It does not aim the specific tasks but enhances the overall ICL capability of the model.
• We only focus on MetaICL in this talk, though instruction/symbol tuning… are more popular.
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Mechanisms of ICL？
Mesa-optimization hypothesis

• Hypothesis: the forward pass of the trained transformer is equivalent to 
optimizing an inner objective function in-context: length generalization?

• How to study this? What is the methodology of fundamental research?
• Conduct empirical study and summarize common phenomena.
• Establish theory to interpret these phenomena.
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Methodology

Deep learning theory, Taiji Suzuki, 2024

Empirical study & theory
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• We train a transformer (GPT-2) with (AR) MetaICL objective from scratch.
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• Given clean test prompt, transformer closely matches the optimal least squares 
estimator.
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• Given clean test prompt, transformer closely matches least squares estimator.
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• Is trained transformer really the same as LSE?: further try OOD settings.
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• Trained transformer is not exact LSE, but robust to some distribution shifts.
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Empirical findings

What Can Transformers Learn In-Context? A Case Study of Simple Function Classes, NeurIPS, 2022

A case study on linear functions

• Trained transformer is not exact LSE, but robust to some distribution shifts.
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Mesa-optimization hypothesis

Transformers Learn In-Context by Gradient Descent, ICML, 2023

Transformers perform gradient descent to approximate LSE?

• Details of experiments is placed in next subsection.

• Hypothesis: trained transformers perform GD to minimize some inner objective 
in-context.
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Mesa-optimization hypothesis

Transformers Learn In-Context by Gradient Descent, ICML, 2023

Transformers perform gradient descent to approximate LSE?

• Theoretically, with suitable embeddings, the forward pass of one-layer linear 
attention can express one step of GD on the OLS problem over the context
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Mesa-optimization hypothesis

Transformers Learn In-Context by Gradient Descent, ICML, 2023

Transformers perform gradient descent to approximate LSE?

• Empirically, the forward pass of trained one-layer linear attention can be captured 
by one step of GD on the OLS problem over the context, even in OOD setting.
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Theoretical results

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Architecture: One-layer linear self-attention module with residual.

Drop out softmax operator
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Data: 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ~ 𝑁𝑁(0,Λ) and 𝑤𝑤 ~ 𝑁𝑁(0, 𝐼𝐼𝑑𝑑).

• Embeddings (important): stack historical linear problem examples, and add the 
query input with 0 left for storing the prediction result.



2024/6/6 21

Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Population loss.

• We use gradient flow to optimize the loss function.
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Initialization. We let the zero matrices in the before theoretical construction as 
zero at the initial time.
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Convergence results. Let Γ = 1 + 1
𝑁𝑁
Λ + 1

𝑁𝑁
𝑡𝑡𝑡𝑡 Λ 𝐼𝐼𝑑𝑑 , we have

• When Λ = 𝜎𝜎2𝐼𝐼𝑑𝑑 , then Γ = 1 + 𝑑𝑑+1
𝑁𝑁

𝜎𝜎2𝐼𝐼𝑑𝑑 , which exactly matches the theoretical 
construction to perform one step of GD.
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• In general, trained transformer implement one step of preconditioned GD, and 
optimally solve the linear regression task with long enough prompts.

• It is not LSE yet.

One step size preconditioned GD for 
the OLS problem over context！
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Trained transformer is robust to task shifts.
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Trained transformer is robust to query shifts.
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Theoretical results on Meta ICL

Trained Transformers Learn Linear Models In-Context, JMLR, 2024

Meta-Trained Transformers is a mesa-optimizer

• Trained transformer is not robust to query shifts.
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Summary on Meta ICL

• Empirical findings: practical transformer closely matches the optimal LSE.

• Mesa-optimization hypothesis: trained transformer perform GD-based algorithm.
• A theoretical construction without optimization guarantee.
• Empirical evidence on one-layer linear attention.

• Non-trivial theoretical framework based on feature learning theory.
• Trained one-layer linear attention do implement GD!
• Interpret the practical transformer in OOD settings.
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Mesa-optimization hypothesis

Uncovering mesa-optimization algorithms in Transformers, ICLR-W, 2024

Transformers perform gradient descent to approximate LSE?

• Hypothesis: Autoregressively trained transformers also perform GD to minimize 
some inner objective in-context.
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Mesa-optimization hypothesis

Uncovering mesa-optimization algorithms in Transformers, ICLR-W, 2024

Transformers perform gradient descent to approximate LSE?

• Theoretically, with suitable embeddings, the forward pass of one-layer linear 
attention can express one step of GD on the OLS problem over the context.

• Empirically, the forward pass of autoregressively trained one-layer linear attention 
can be captured by one step of GD.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Mesa-optimization in Autoregressively trained transformers
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Sequence distribution

• Initial point 𝑥𝑥1 ~ 𝐷𝐷𝑥𝑥1 , we discuss its impact on trained transformer.

• 1-st order AR process: 𝑥𝑥𝑡𝑡+1 = 𝑊𝑊𝑥𝑥𝑡𝑡.
• 𝑊𝑊 is uniformly sampled from diagonal unitary complex matrix. 
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Architecture

• Architecture: One-layer linear causal self-attention module with residual.

• Embeddings: natural extension of that in MetaICL setting. 0 is left for storing 
prediction results.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Loss function and initialization

• Loss function: we use gradient flow on next-token prediction loss.

• Initialization: we let the zero matrices in the ideal theoretical construction as zero 
at the initial time.



2024/6/6 36

Theoretical analyses

How do Transformers perform In-Context Autoregressive Learning?, ICML, 2024

Existing results

• 𝑥𝑥1 = 1𝑑𝑑.

• Red matrices are all diagonal.

• Only focus on the property of global minima, without convergence guarantee.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

When does dynamics converge to ideal theoretical construction?

• We note that any random vectors whose coordinates are i.i.d. random variables 
with zero mean satisfy this assumption, such as 𝑁𝑁 0, 𝐼𝐼𝑑𝑑 .



2024/6/6 38

Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Convergence results

• Autoregressively trained transformer converges to the ideal case.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Convergence results

• Autoregressively trained transformer implements GD for the OLS problem.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Capability of Mesa-optimizer

• Mesa-optimizer fails to recover process with normal initial token.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

When does mesa-optimizer recover sequence?

• The sufficient and necessary condition for learning the true distribution.

• A toy example that satisfies the assumption.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Simulations

• Simulations verify our theoretical results.
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Theoretical analyses

On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability, arxiv, 2024

Simulations

• We also explore the case beyond the data condition, and suggest it will perform 
preconditioned GD in general.
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Future works
Both empirical and theoretical directions

• Observe and interpret more complex architectures with different embeddings
• 1-layer: softmax SA, multi-head SA
• 2-layer: looped SA, independent LSA, LSA+MLP, Layernorm
• Transformer block, full transformer
• Asymptotic theory: infinite width/depth

• Observe and interpret more data settings
• Noise, imbalanced…
• Discrete sequence

• Better architecture to perform mesa-optimization

• Relation between AR ICL and Meta ICL
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