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1.1 What is machine learning?

Roughly speaking, learning is the process of converting experience into expertise or knowledge.
The input to a learning algorithm is training data, representing experience, and the output
is some expertise.

Figure: A standard learning process.
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1.2 What do we need to clarify at first?

Seeking a formal-mathematical understanding of ML, we’ll have to be more explicit about
what we mean by each of the involved terms:

Data: What is the training data our programs will access?

Distribution-free/special distribution, i.i.d../non-i.i.d., . . .
labeled/unlabeled, binary/multi-class/multi-label, clean/noisy, . . .

Algorithm: How can the process of learning be automated?

Hypothesis set: finite hypotheses/linear models/neural networks,
Loss function: zero-one loss/convex surrogate loss(cross-entropy loss, hinge loss) . . . ,
Optimization: empirical risk minimization/gradient-based/reinforcement learning, . . .

Performance: How can we evaluate the success of the quality of the output?

Guarantee: Generalization bounds, sample complexity
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1.3 Mathematical definitions

We introduce some mathematical notations.

Data:

Let X ⊆ Rd be the input space and Y = {−1,+1} be the label space.
We denote by D the population distribution over Z = X× Y.
Training set S with m i.i.d. examples sampled from the distribution D.

Algorithm

Hypothesis set H: set of functions X→ Y (for 0-1 loss) or X→ R (otherwise).
In addition, Hall denotes the set of all functions.
Loss function ` : Y× Y/R× Y→ R+.

Zero-one loss: `0−1(h(x), y) = 1h(x)6=y,

Logistic loss: `log(h(x), y) = log2(1 + e−yh(x)),

Empirical error R̂`,S(h) =
1
m

∑m
i=1 `(h(xi), yi), true error R`(h) = Ez∼D[`(h(x), y)].

ERM: return hypothesis hS = argminh∈HR̂`,S(h).
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1.4 Roadmap of this tutorial

Given training set S, hypothesis H, and learning algorithm A, we can obtain a hypothesis hS .
We’d like to estimate or give some guarantees for R`(hS).

(Generalization error) Estimate R`(hS) based on R̂`,S(hS):

R`(hS) ≤ R̂`,S(hS) + f1H,A(m)?

(Estimation error) Distance between hS and the optimal hypothesis in H:

R`(hS) ≤ inf
h∈H

R`(h) + f2H,A(m)?

(Excess risk) Distance between hS and the Bayes optimal predictor:

R`(hS) ≤ inf
h∈Hall

R`(h) + f3H,A(m)?

Problem: randomness

Because S is randomly sampled from distribution D, R`(hS), R̂`,S(hS) and f iH,A(m)
mentioned above is not deterministic. How can we clarify this?
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1.5 Concentration with high probability

To solve the problem from the randomness of these terms, we construct theoretical guarantees
with high probability, but not deterministicly. Formally, with high probability 1− δ, we study:

(Generalization error) Estimate R`(hS) based on R̂`,S(hS):

R`(hS) ≤ R̂`,S(hS) + f1H,A(m, δ)?

(Estimation error) Distance between hS and the optimal hypothesis in H:

R`(hS) ≤ inf
h∈H

R`(h) + f2H,A(m, δ)?

(Excess risk) Distance between hS and the Bayes optimal predictor:

R`(hS) ≤ inf
h∈Hall

R`(h) + f3H,A(m, δ)?

A view from mathematician

These high probability bounds are closely related to ”concentration inequalities”! It focuses on
bounding the probability P(

∣∣X − E[X]
∣∣ ≥ ε). Lots of tools can be found in the literature [1, 2].
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1.6 Some important concentration inequalities

Lemma 1 (Hoeffding’s inequality, bound for
∑m

i=1Xi, Theorem D.2, [3])

Let X1, . . . , Xm be independent random variables with Xi taking values in [ai, bi] for all i.
Then, for any ε > 0, the following inequalities hold for Sm =

∑m
i=1Xi:

P
[ ∣∣Sm − E [Sm]

∣∣ ≥ ε] ≤ 2 exp

(
−2ε2∑m

i=1 (bi − ai)2

)
.
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1.6 Some important concentration inequalities

Lemma 2 (McDiarmid’s inequality, bound for f(Xm
1 ), Theorem D.8, [3])

Let X1, . . . , Xm be a set of m independent random variables and assume that there exist
c1, . . . , cm > 0 such that f : Xm → R satisfies the following conditions:∣∣∣f (x1, . . . , xi, . . . , xm)− f

(
x1, . . . , x

′
i, . . . xm

)∣∣∣ ≤ ci
for all i and any points x1, . . . , xm, x

′
i. Let f(S) denote f (X1, . . . , Xm), then, for all ε > 0,

the following inequality holds:

P[
∣∣f(S)− E[f(S)]

∣∣ ≥ ε] ≤ 2 exp

(
−2ε2∑m
i=1 c

2
i

)
.
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1.6 Some important concentration inequalities

Lemma 3 (Maximal inequality, bound for finite maxj Xj, Corollary D.11, [3])

Let X1 . . . Xn be n real-valued random variables such that for all j,Xj =
∑m

i=1 Yij where, for
each fixed j, Yij are independent zero mean random variables taking values in [−ri,+ri], for
some ri > 0. Then, the following inequality holds:

E
[
max
j
Xj

]
≤ r
√

2 log n

with r =
√∑m

i=1 r
2
i .
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Uniformly convergence

First, we want to bound R`(hS)− R̂`,S(hS). However, it is difficult because we do not know
which hypothesis hS is selected by the learning algorithm A. Besides, Hoeffding’s inequality
can not be used directly due to the independence assumption failing to hold. Therefore, we
skip this problem by giving a uniform convergence bound, that is, a bound that holds for the
set of all hypotheses in H, which a fortiori includes hS .

Uniformly convergence

To solve the problem mentioned above, we will bound

sup
h∈H

∣∣∣R`(h)− R̂`,S(h)
∣∣∣ ≥ ∣∣∣R`(hS)− R̂`,S(hS)

∣∣∣ ,
which changes the bound from algorithm-dependent to algorithm-independent. To derive
algorithm-dependent bounds for hS , one can refer to algorithm stability [4] and information
theory [5].
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2.2 Finite hypothesis set

In this part, we introduce the first generalization bound in this tutorial, which focuses on the
finite hypothesis set, that is, |H| < +∞. The result shows that we only need O(log|H|)
samples to make the generalization error small enough.

Theorem 4 (Theorem 2.13, [3])

Let H be a finite hypothesis set and the loss function ` is bounded by M . Then, for any
δ > 0, with probability at least 1− δ, the following inequality holds:

∀h ∈ H, R`(h) ≤ R̂`,S(h) +M

√
log |H|+ log 2

δ

2m
.

Problem: infinite hypothesis set

If |H| = +∞ (e.g., linear classifiers, neural networks), then the bound will be meaningless.
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2.3 Rademacher complexity

Rademacher complexity is used to establish generalization bounds for infinite hypothesis sets.
It measures the ability of the hypothesis set to capture the randomness. We note that
Rm(Hall) = 1 when we consider G : X 7→ {−1,+1}.

Definition 5 (Rademacher complexity)

Let D denote the distribution according to which samples are drawn. For any integer m ≥ 1,
the Rademacher complexity of G is the expectation of the empirical Rademacher complexity
over all samples of size m drawn according to D :

Rm(G) = E
S∼Dm

[
R̂S(G)

]
= E

S∼Dm
E
σ

sup
g∈G

1

m

m∑
i=1

σig (zi)

 ,
where σ = (σ1, . . . , σm)>, with σis independent uniform random variables taking values in
{−1,+1}. The random variables σi are called Rademacher variables.
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2.3 Rademacher complexity

Theorem 6 (Theorem 3.3, [3])

Let G be a family of functions mapping from Z to [0,M ]. Then, for any δ > 0, with
probability at least 1− δ over the draw of an i.i.d.. sample S of size m, each of the following
holds for all g ∈ G :

E[g(z)] ≤ 1

m

m∑
i=1

g (zi) + 2Rm(G) +M

√
log 1

δ

2m
.

Relation with generalization bounds

Let G = {(x, y)→ `(h(x), y) : h ∈ H} with ` ≤M . For any fixed h ∈ H, we have

R`(h) ≤ R̂`,S(h) + 2Rm(G) +M

√
log 1

δ

2m
.
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3.1 Bounds for the zero-one loss

In this part, we derive the generalization bound for the zero-one loss, and assume that ERM
can be performed. Our task is to bound the Rademacher complexity of G. The following
lemma is used to simplify the Rm(G) to Rm(H) .

Lemma 7 (Lemma 3.4, [3])

Let H be a family of functions taking values in {−1,+1} and let G be the family of loss
functions associated to H for the zero-one loss: G = {(x, y) 7→ 1h(x)6=y | h ∈ H}. Then, the
following relation holds between the Rademacher complexities of G and H:

Rm(G) =
1

2
Rm(H).
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3.1 Bounds for the zero-one loss

Now, we are ready to derive generalization bounds for binary classification in terms of the
Rademacher complexity of the hypothesis set H.

Theorem 8 (Theorem 3.5, [3])

Let H be a family of functions taking values in {−1,+1} and ` be the zero-one loss. Then, for
any δ > 0, with probability at least 1− δ over a sample S of size m drawn according to D,
each of the following holds for any h ∈ H:

R`0−1(h) ≤ R̂`0−1,S(h) + Rm(H) +

√
log 1

δ

2m
.

Problem: hardness for computing Rademacher complexity

Rademacher complexity is distribution-dependent. However, it is hard to compute.
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3.1 Bounds for the zero-one loss

To bound the Rm(H), the core property we will use is that the outputs
{(h(x1), . . . , h(xm)) : h ∈ H} is finite (poly(m)) when S is fixed, though the hypothesis set
H is infinite. Built upon this, we can define the growth function as follows.

Definition 9 (Growth function)

The growth function ΠH : N→ N for a hypothesis set H is defined by:

∀m ∈ N,ΠH(m) = max
{x1,...,xm}⊆X

∣∣∣∣{(h (x1) , . . . , h (xm)
)

: h ∈ H
}∣∣∣∣ ≤ 2m.

Distribution-independent property of the growth function

Unlike the Rademacher complexity, this measure does not depend on the distribution D

(uniformly with S), it is purely combinatorial, which is easier to compute or estimate.
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3.1 Bounds for the zero-one loss

Then we can directly bound Rm(H) by using Lemma 3.

Corollary 10

Let H be a family of functions taking values in {−1,+1} and ` be the zero-one loss. Then, for
any δ > 0, with probability at least 1− δ over a sample S of size m drawn according to D,
each of the following holds for any h ∈ H:

R`0−1(h) ≤ R̂`0−1,S(h) +

√
2 log ΠH(m)

m
+

√
log 1

δ

2m
.

The scale of ΠH(m)

If we naively let ΠH(m) = 2m, the bound is meaningless. Thus, we hope that
ΠH(m) = poly(m) to give a good guarantee.
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3.1 Bounds for the zero-one loss

Definition 11 (VC-dimension)

The VC-dimension of a hypothesis set H is the size of the largest set that can be shattered by
H: VCdim(H) = max

{
m : ΠH(m) = 2m

}
Lemma 12 (Sauer’s lemma)

Let H be a hypothesis set with VCdim(H) = d < +∞, then it holds that:

ΠH(m) ≤
d∑
i=0

(
m
i

) (m≥d)
≤

(
em

d

)d
= O(md).

(
poly(m)

)
Lemma 13 (VC dimension of linear models)

Let H =
{
x 7→ 〈w,x〉+ b | w ∈ Rd, b ∈ R

}
be a linear hypothesis set in Rd, then

VCdim(H) = d+ 1.
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3.1 Bounds for the zero-one loss

Theorem 14 (Generalization bound w.r.t VC-dimension)

Let H be a family of functions taking values in {−1,+1}, VCdim(H) = d < +∞, and ` be
the zero-one loss. Then, for any δ > 0, with probability at least 1− δ over a sample S of size
m drawn according to D, the following holds for any h ∈ H:

R`0−1(h) ≤ R̂`0−1,S(h) +

√
2d

m
log

em

d
+

√
log 1

δ

2m
.

Limitations of the VC dimension

The bounds for the VC dimension always depend on the dimension or the number of
parameters. This will not be a good bound for high(infinite)-dimensional models (e.g., kernel
methods). Besides, it does not consider other properties of data (e.g., norm).
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3.2 Bounds for the surrogate losses

In practice, directly optimizing the zero-one loss is NP-hard. We usually make use of some
surrogate losses (ideally, convex), which are easy to optimize.

logistic regression: logistic (cross-entropy) loss `log(h(x), y) = log2(1 + e−yh(x)),

support vector machine: hinge loss `hinge(h(x), y) = max(0, 1− yh(x)),

AdaBoost: exponential loss `exp(h(x), y) = exp(−yh(x)).

Relation between the zero-one loss and above surrogate losses

The above surrogate losses upper bound the zero-one loss, which implies that we can
bound the true error w.r.t zero-one loss by the empirical error w.r.t. surrogate losses.

R`0−1(h) ≤ R`sur(h) ≤ R̂`sur,S(h) + 2Rm(G) +M

√
log 1

δ

2m
.
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3.2 Bounds for the surrogate losses

Figure: Visualization of the loss functions. t means the margin yh(x).
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3.2 Bounds for the surrogate losses

Similarly to the case with the zero-one loss, there exists a relationship between Rm(G) and
Rm(H) when the surrogate loss is Lipschitz.

Lemma 15 (Talagrand’s lemma)

Let φ : R→ R be a κ-Lipschitz function. Then

Rm(φ ◦H) ≤ κRm(H),

where φ ◦H = {z 7→ φ(h(z)) : h ∈ H}.

Lipschitzness of the above surrogate losses

Logistic loss and hinge loss are Lipschitz functions w.r.t. yh(x) (margin). Besides, the
exponential loss is also Lipschitz when the yh(x) is bounded.
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3.2 Bounds for the surrogate losses

Theorem 16 (Rademacher complexity of linear hypotheses with bounded `2 norm)

Let H =
{
x 7→ 〈w,x〉+ b | w ∈ Rd, ‖w‖2 ≤W

}
for some constant W > 0, and

H̃ = {(x, y) 7→ yh(x) | h ∈ H}. Moreover, assume that ‖x‖2 ≤ C (or E
[
‖x‖22

]
≤ C2), where

C > 0 is a constant. Then

R̂S(H̃) = R̂S(H) ≤ W

m

√√√√ m∑
i=1

‖xi‖22,

and

Rm(H̃) = Rm(H) ≤ WC√
m
.
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3.2 Bounds for the surrogate losses

Corollary 17 (Generalization bound for the linear hypothesis set)

Let H =
{
x 7→ 〈w,x〉+ b | w ∈ Rd, ‖w‖2 ≤W, b ∈ R, |b| ≤ B

}
for some constant W > 0.

Assume that ‖x‖2 ≤ C (or E
[
‖x‖22

]
≤ C2), where C is a positive constant. Let surrogate loss

`sur be a κ-Lipschitz function w.r.t. yh(x) and be bounded by M . Then

R`0−1(h) ≤ R`sur(h) ≤ R̂`sur,S(h) + 2κ
WC√
n

+M

√
log 1

δ

2m
.

Comparison to the VC-dimension bounds

This bound is better since it does not have as strong of dependence on the dimension d
(though B,C could dependent on d). Besides, it accounts for the norms of the model
parameters and the data, which inspires us to use weight decay in practice.
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3.3 Covering and packing

In terms of linear hypothesis class, we can use cauchy-schwarz inequality to bound its
Rademacher complexity. However, this trick is not generally suitable, for example, deep neural
nets. We need a general technique to bound the Rademacher complexity w.r.t surrogate losses.

Problem: infinite output space

The core difficulty is that the output space {(h(x1), . . . , h(xm)) : h ∈ H} is infinite. Recall
that when we discussed the zero-one loss, its size is poly(m) and then we use the Lemma 3 to
obtain a bound.

Solution: discretization

We can find finite balls to cover and approximate the output space, then we use Lemma 3 on
the finite selected balls. This is closely related to the covering and packing technique.
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3.3 Covering and packing

Definition 18 (Covering number)

A ε-cover of a set G with respect to a metric ρ is a set {θ1, . . . , θN} ⊆ G such that for each
θ ∈ G, there exists some i ∈ {1, . . . , N} such that ρ(θ, θi) ≤ ε. The ε-covering number
N (ε;G, ρ) is the cardinality of the smallest ε-cover.

Definition 19 (Packing number)

A ε-packing of a set G with respect to a metric ρ is a set {θ1, . . . , θN} ⊆ G such that
ρ(θi, θj) > ε for all distinct i, j ∈ {1, 2, . . . ,M}. The ε-packing number M(ε;G, ρ) is the
cardinality of the largest ε-packing.

Lemma 20 (Relation between covering and packing number)

M(2ε;G, ρ) ≤ N (ε;G, ρ) ≤M(ε;G, ρ).
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3.3 Covering and packing

Figure: Illustration of packing and covering sets.
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3.3 Covering and packing

Figure: Visualization of our proof idea.
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3.3 Covering and packing

Theorem 21 (One-step discretization bound)

Let H be a family of functions X 7→ [−M,M ]. Then

R̂S(H) ≤ inf
ε>0

ε+M

√
2 logN

(
ε;H, L2 (Pn)

)
m

 ,

where L2 (Pn) (f, f ′) =
√

1
m

∑m
i=1

(
f(xi)− f ′(xi)

)2
. The ε term can be thought of as the

discretization error, while the second term is the Rademacher complexity of the finite ε-cover.
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3.3 Covering and packing

Theorem 22 (Dudley’s entropy integral bound)

If H is a function class from X 7→ R, then

R̂S(H) ≤ 12

∫ ∞
0

√
logN

(
ε;H, L2 (Pn)

)
m

dε

or more generally,

R̂S(H) ≤ inf
α≥0

4α+ 12

∫ ∞
α

√
logN

(
ε;H, L2 (Pn)

)
m

dε

 .

Remark

Note that unlike in Theorem 21, we do not require h ∈ H to be bounded. The remaining task
is to bound the covering number N

(
ε;H, L2 (Pn)

)
.
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3.3 Covering and packing

We still consider the linear hypothesis class. We first bound the covering number of the
parameter space, then obtain the covering number of the output space.

Theorem 23 (Covering number of the linear parameter space)

Let W =
{

(w, b) : w ∈ Rd, ‖w‖2 ≤W, b ∈ R, |b| ≤ B
}

. Assume that ‖x‖2 ≤ C, where C is a

positive constant. Then for any ε > 0, the covering number of W is bounded by

logN
(
ε;W, ‖ · ‖2

)
≤ d log

(
1 +

2(W +B)

ε

)
,

and the covering number of H is bounded by

logN
(
ε;H, L2 (Pn)

)
≤ d log

(
1 +

2(W +B)(C + 1)

ε

)
.
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3.3 Covering and packing

We conclude the Rademacher complexity of the linear hypothesis set by using the covering
number as follows.

Theorem 24 (Rademacher commplexity of linear hypothesis set)

Let W =
{

(w, b) : w ∈ Rd, ‖w‖2 ≤W, b ∈ R, |b| ≤ B
}

, and H = {〈w,x〉+ b | (w, b) ∈W}.
Assume that ‖x‖2 ≤ C, where C is a positive constant. Then

Rm(H) ≤ 24
(
(W +B)(C + 1)

)√ d

m
.

Remark

This is better than the VC-dimension bound.
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4.1 Bounds for the estimation error

Recall that the second goal is to bound R`(hS)− infh∈H R̂`(h), which is called as estimation
error. Let h∗ = argminh∈HR`(h). It can be decomposed as the following.

R`(hS)− R`(h
∗)︸ ︷︷ ︸

estimation error

= R`(hS)− R̂`,S(hS)︸ ︷︷ ︸
generalization error

+R̂`,S(hS)− R̂`,S(h∗) + R̂`,S(h∗)− R`(h
∗)

≤ R`(hS)− R̂`,S(hS)︸ ︷︷ ︸
generalization error

+R̂`,S(h∗)− R`(h
∗)

Bound for R̂`,S(h∗)− R`(h
∗)

The remaining task is to bound R̂`,S(h∗)− R`(h
∗), which can be realized by directly using the

Hoeffding’s inequality (Lemma 1).
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4.1 Bounds for the estimation error

Theorem 25 (Estimation error bound for the zero-one loss)

Let H be a family of functions taking values in {−1,+1}, VCdim(H) = d < +∞, and ` be
the zero-one loss. Then, for any δ > 0, with probability at least 1− δ over a sample S of size
m drawn according to D, the following holds for any h ∈ H:

R`0−1(h) ≤ R`0−1(h∗0−1) +

√
2d

m
log

em

d
+ 2

√
log 2

δ

2m
.

Limitation

Performing ERM w.r.t. the zero-one loss is not practical.

Zheng, Chenyu (GSAI@RUC) Classical Learning Theory Group Meeting 39 / 45



4.1 Bounds for the estimation error

Theorem 26 (Estimation error bound for the surrogate losses)

Let H =
{
x 7→ 〈w, x〉 | w ∈ Rd, ‖w‖2 ≤W

}
for some constant W > 0. Assume that

E
[
‖x‖22

]
≤ C2, where C is a positive constant. Let surrogate loss `sur be a κ-Lipschitz

function w.r.t. yh(x) and be bounded by M . Then

R`0−1(h) ≤ R`sur(h) ≤ R`sur,S(h∗sur) + 2κ
WC√
n

+ 2M

√
log 2

δ

2m
.

Limitation

In practical classification tasks, we care more about R`0−1(h)− R`0−1(h∗0−1) than
R`sur(h)− R`sur(h

∗
sur). However, we can not obtain the information about the former.
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4.1 Bounds for the estimation error

H-consistency bound tries to build the quantitative relationship between
R`0−1(h)− R`0−1(h∗0−1) and R`sur(h)− R`sur(h

∗
sur).

Definition 27

H-consistency bound is in the following form that holds for all h ∈ H and some
non-decreasing function f : R+ → R+:

R`2(h)− R`2(h∗`2) ≤ f
(
R`1(h)− R`1(h∗`1)

)
.

If f(0) = 0, then we call the loss ` is H-consistent, which is important in reality.

Existing works

[6] constructs a tight binary H-consistency framework for different hypotheses and losses. [7,
8] further extend it to the multiclass case in different ways.
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4.2 Discussion about the excess risk

Our final goal is to discuss the excess risk R`(hS)− infh∈Hall
R`(h). We define

h∗ = argminh∈HR`(h) and hBayes = argminh∈Hall
R`(h). We can decompose the excess risk

as:

R`(hS)− R`(hBayes)︸ ︷︷ ︸
excess risk

= R`(hS)− R`(h
∗)︸ ︷︷ ︸

estimation error

+R`(h
∗)− R`(hBayes)︸ ︷︷ ︸

approximate error

.

Bias-complexity trade-off

Estimation error depends on the training set size and the complexity of the hypothesis
set. It increases as the hypothesis set becomes more complex (overfitting).

Approximate error is determined by the hypothesis class chosen. Reducing the hypothesis
class can increase the approximation error (underfitting).

We need inductive biases to select a good hypothesis class (MLP vs. CNN).
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4.2 Discussion about the excess risk

By setting H = Hall, we can obtain the definition of the Bayes consistency.

Definition 28

Bayes consistency bound is in the following form that holds for all measurable h and some
non-decreasing function f : R+ → R+:

R`2(h)− R`2(h`2,Bayes) ≤ f
(
R`1(h)− R`1(h`1,Bayes)

)
.

If f(0) = 0, then we say the loss ` is Bayes-consistent, which is important in reality.

Existing works

[9, 10] analyze the relationship between the excess risk of zero-one loss and that of a surrogate
loss, and prove that lots of convex surrogate losses are Bayes-consistent.
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Olivier Bousquet and André Elisseeff. “Stability and Generalization”. In: J. Mach. Learn.
Res. 2 (2002), pp. 499–526.

Aolin Xu and Maxim Raginsky. “Information-theoretic analysis of generalization
capability of learning algorithms”. In: Advances in Neural Information Processing
Systems. 2017, pp. 2524–2533.

Pranjal Awasthi et al. “H-Consistency Bounds for Surrogate Loss Minimizers”. In:
International Conference on Machine Learning. Vol. 162. 2022, pp. 1117–1174.

Zheng, Chenyu (GSAI@RUC) Classical Learning Theory Group Meeting 44 / 45



References II

Pranjal Awasthi et al. “Multi-Class H-Consistency Bounds”. In: Advances in Neural
Information Processing Systems. 2022.

Chenyu Zheng et al. “Revisiting Discriminative vs. Generative Classifiers: Theory and
Implications”. In: CoRR abs/2302.02334 (2023).

Tong Zhang. “Statistical behavior and consistency of classification methods based on
convex risk minimization”. In: The Annals of Statistics 32.1 (2004), pp. 56–85.

Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. “Convexity, classification, and
risk bounds”. In: Journal of the American Statistical Association 101.473 (2006),
pp. 138–156.

Zheng, Chenyu (GSAI@RUC) Classical Learning Theory Group Meeting 45 / 45


	Introduction
	Uniformly Convergence and Rademacher Complexity
	Rademacher complexity for concrete hypotheses and losses
	Estimation error, excess risk, and consistency
	References

